Early Mars habitability and global cooling by H

This page was created programmatically, to read the article in its original location you can go to the link bellow:
https://www.nature.com/articles/s41550-022-01786-w
and if you want to remove this article from our site please contact us


  • Cockell, C. S. et al. Habitability: a review. Astrobiology 16, 89–117 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Michalski, J. R. et al. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Fairén, A. G. et al. Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Clifford, S. M. et al. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Rivera-Valentín, E. G., Chevrier, V. F., Soto, A. & Martínez, G. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 4, 756–761 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Stevens, A. H., Patel, M. R. & Lewis, S. R. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars. Icarus 250, 587–594 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Sholes, S. F., Krissansen-Totton, J. & Catling, D. C. A maximum subsurface biomass on mars from untapped free energy: CO and H2 as potential antibiosignatures. Astrobiology 19, 655–668 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Liu, J. et al. Anoxic chemical weathering under a reducing greenhouse on early Mars. Nat. Astron. 5, 503–509 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).

    Article 

    Google Scholar
     

  • Martin, W. F. & Sousa, F. L. Early microbial evolution: the age of anaerobes. Cold Spring Harbor Perspect. Biol 8, a018127 (2016).

    Article 

    Google Scholar
     

  • Sauterey, B. et al. Co-evolution of primitive methane-cycling ecosystems and early Earth’s atmosphere and climate. Nat. Commun. 11, 2705 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Affholder, A. et al. Bayesian analysis of Enceladus’s plume data to assess methanogenesis. Nat. Astron. 5, 805–814 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Turbet, M., Boulet, C. & Karman, T. Measurements and semi-empirical calculations of CO2 + CH4 and CO2 + H2 collision-induced absorption across a wide range of wavelengths and temperatures. Application for the prediction of early Mars surface temperature. Icarus 346, 113762 (2020).

    Article 

    Google Scholar
     

  • Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Nat. Acad. Sci. USA 101, 4631–4636 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Taubner, R.-S. et al. Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9, 748 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Ramirez, R. M. A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).

    Article 

    Google Scholar
     

  • Tarnas, J. D. et al. Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Yung, Y. L. et al. Methane on Mars and habitability: challenges and responses. Astrobiology 18, 1221–1242 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Knutsen, E. W. et al. Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus 357, 114266 (2021).

    Article 

    Google Scholar
     

  • Cockell, C. S. Trajectories of martian habitability. Astrobiology 14, 182–203 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Westall, F. et al. Biosignatures on Mars: What, where, and how? Implications for the search for Martian life. Astrobiology 15, 998–1029 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Lepot, K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth Sci. Rev. 209, 103296 (2020).

    Article 

    Google Scholar
     

  • Fastook, J. L. & Head, J. W. Glaciation in the late noachian icy highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Tanaka, K. L. et al. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, Scale 1000,000 (US Geological Survey, 2014); https://doi.org/10.3133/sim3292

  • Sun, V. Z. & Stack, K. M. Geologic Map of Jezero Crater and the Nili Planum Region, Mars: U.S. Geological Survey Scientific Investigations Map 3464, Scale 1000 (US Geological Survey, 2020); https://doi.org/10.3133/sim3464

  • Ward, P. The Medea Hypothesis (Princeton Univ. Press, 2009).

  • Chopra, A. & Lineweaver, C. H. The Case for a Gaian bottleneck: the biology of habitability. Astrobiology 16, 7–22 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Arney, G. et al. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth. Astrobiology 16, 873–899 (2016).

  • Batalha, N. et al. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337–349 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Stüeken, E. E. et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Cockell, C. S. et al. Minimum units of habitability and their abundance in the universe. Astrobiology 21, 481–489 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Adams, D. et al. Nitrogen fixation at early Mars. Astrobiology 21, 968–980 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Fergason, R. L., Hare, T. M. and Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200m v2. Astrogeology PDS Annex (US Geological Survey, 2018); http://bit.ly/HRSC_MOLA_Blend_v0

  • Sauterey, B. MarsEcosys v.1.0. Zenodo https://doi.org/10.5281/zenodo.6963348 (2022).


  • This page was created programmatically, to read the article in its original location you can go to the link bellow:
    https://www.nature.com/articles/s41550-022-01786-w
    and if you want to remove this article from our site please contact us

    Leave a Reply

    You have to agree to the comment policy.

    19 + 4 =