Categories: Science

Unlocking the Nucleolar Secret: How a Hidden Mechanism Shapes Proteostasis through TGFβ/ERK Pathways


This page has been generated programmatically; to access the article in its original setting, you can follow the link below:
https://www.nature.com/articles/s41556-024-01564-y
and if you wish to have this article removed from our site, please get in touch with us


  • Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article
    CAS 
    PubMed 

    Google Scholar
     

  • Carvalhal Marques, F., Volovik, Y. & Cohen, E. The roles of cellular and organismal aging in the development of late-onset disorders. Annu. Rev. Pathol. 10, 1–23 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paulson, H. L. Protein destiny in neurodegenerative proteinopathies: polyglutamine disorders join the (mis)fold. Am. J. Hum. Genet. 64, 339–345 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, H. C. et al. Polyglutamine (PolyQ) disorders: from genetics to therapies. Cell Transplant. 23, 441–458 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Grøntvedt, G. R. et al. Alzheimer’s disease. Curr. Biol. 28, R645–R649 (2018).

    Publication 
    PubMed 

    Google Scholar
     

  • Sala Frigerio, C. et al. The principal risk factors for Alzheimer’s disease: age, gender, and genetics influence the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306.e6 (2019).

    Publication 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaducci, L. & Tesco, G. Aging as a significant threat for degenerative illnesses of the central nervous system. Curr. Opin. Neurol. 7, 283–286 (1994).

    Publication 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichel, W. The science of aging. J. Am. Geriatr. Soc. 14, 431–436 (1966).

    Publication 
    CAS 
    PubMed 

    Google Scholar
     

  • Soultoukis, G. A. & Partridge, L. Nutritional protein, metabolism, and aging. Annu. Rev. Biochem. 85, 5–34 (2016).

    Publication 
    CAS 
    PubMed“`html

    Google Scholar
     

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans variant that survives twice as long as the wild type. Nature 366, 461–464 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsin, H. & Kenyon, C. Signals emanating from the reproductive system influence the lifespan of C. elegans. Nature 399, 362–366 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Modifying proteostasis for medical intervention. Science 319, 916–919 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The characteristics of aging. Cell 153, 1194–1217 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David, D. C. et al. Extensive protein aggregation as an intrinsic aspect of aging in C. elegans. PLoS Biol. 8, e1000450 (2010).

    “`

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinkraus, K. A. et al. Caloric restriction mitigates proteotoxicity and promotes longevity by an hsf-1-dependent pathway in Caenorhabditis elegans. Aging Cell 7, 394–404 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Contrasting functions safeguard against aging-related proteotoxicity. Science 313, 1604–1610 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gontier, G., George, C., Chaker, Z., Holzenberger, M. & Aid, S. Inhibiting IGF signaling in mature neurons alleviates Alzheimer’s disease pathology by promoting amyloid-beta clearance. J. Neurosci. 35, 11500–11513 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, E. et al. Diminished IGF-1 signaling postpones age-related proteotoxicity in mice. Cell 139, 1157–1169 (2009).

    Publication 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frakes, A. E. & Dillin, A. The UPRER: an indicator and coordinator of organismal homeostasis. Mol. Cell 66, 761–771 (2017).

    Publication 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, R. C. & Dillin, A. XBP-1 serves as a cell-nonautonomous modulator of stress resistance and lifespan. Cell 153, 1435–1447 (2013).

    Publication 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calculli, G. et al. Systemic governance of mitochondria by germline proteostasis averts protein aggregation in the soma of C. elegans. Sci. Adv. 7, eabg3012 (2021).

    Publication 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, J. Y. & Worman, H. J. Molecular pathology of laminopathies. Annu. Rev. Pathol. 17, 159–180 (2022).

    “`html
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levine, A., Grushko, D. & Cohen, E. Gene expression modulation by the linker of nucleoskeleton and cytoskeleton complex contributes to proteostasis. Aging Cell 18, e13047 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mediani, L. et al. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J. 38, e101341 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frottin, F. et al. The nucleolus acts as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiku, V. et al. Small nucleoli serve as a cellular hallmark of longevity. Nat. Commun. 8, 16083 (2017).

    Article 
    CAS 
    “““html
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tjahjono, E., Revtovich, A. V. & Kirienko, N. V. Box C/D small nucleolar ribonucleoproteins modulate mitochondrial oversight and innate immunity. PLoS Genet. 18, e1010103 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Link, C. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 92, 9368–9372 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volovik, Y., Marques, F. C. & Cohen, E. The nematode Caenorhabditis elegans: an adaptable model for examining proteotoxicity and aging. Methods 68, 458–464 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shemesh, N., Shai, N. & Ben-Zvi, A. Germline stem cell stasis stops the decline of somatic proteostasis during early Caenorhabditis elegans adulthood. Aging Cell 12, 814–822 (2013).

    Article 
    CAS 
    “““html
    PubMed 

    Google Scholar
     

  • Moll, L. et al. The insulin/IGF signaling pathway influences SUMOylation to modulate aging and proteostasis in Caenorhabditis elegans. eLife 7, e38635 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The dynamic threshold for polyglutamine-expansion protein aggregation and cellular toxicity is affected by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brignull, H. R., Moore, F. E., Tang, S. J. & Morimoto, R. I. Polyglutamine proteins at the pathogenic threshold demonstrate neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J. Neurosci. 26, 7597–7606 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Characteristics of aging: a proliferating realm. Cell 186, 243–278 (2023).

    “`Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGee, M. D., Day, N., Graham, J. & Melov, S. cep-1/p53-dependent dysplastic pathology of the aging C. elegans gonad. Aging 4, 256–269 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajnal, A. & Berset, T. The C. elegans MAPK phosphatase LIP-1 is essential for the G(2)/M meiotic arrest of developing oocytes. EMBO J. 21, 4317–4326 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ermolaeva, M. A. et al. DNA damage within germ cells induces an innate immune mechanism that prompts systemic stress resilience. Nature 501, 416–420 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha, D. S., Datla, U. S., Hollis, S. E., Kimble, J. & Lee, M. H. The Ras-ERK MAPK regulatory network modulates dedifferentiation in Caenorhabditis elegans germline. Biochim. Biophys. Acta 1823, 1847–1855 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Chen, D. et al. Germline signaling influences the synergistically extended lifespan resulting from dual mutations in daf-2 and rsks-1 in C. elegans. Cell Rep. 5, 1600–1610 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zheng, N. et al. Configuration of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article
    CAS
    PubMed

    Google Scholar

  • Haque, R. et al. Human insulin influences alpha-synuclein aggregation through DAF-2/DAF-16 signaling pathway by opposing DAF-2 receptor in C. elegans model of Parkinson’s disease. Oncotarget 11, 634–649 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Ludewig, A. H., Klapper, M. & Doring, F. Recognizing evolutionarily conserved genes in the dietary restriction response utilizing bioinformatics followed by testing in Caenorhabditis elegans. Genes Nutr. 9, 363 (2014).

    “`html
    Article 
    PubMed 

    Google Scholar
     

  • Roitenberg, N. et al. Modulation of caveolae by insulin/IGF-1 signaling alters aging in Caenorhabditis elegans. EMBO Rep. 19, e45673 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volovik, Y. et al. Distinct regulation of the heat shock factor 1 and DAF-16 by neuronal nhl-1 in the nematode C. elegans. Cell Rep. 9, 2192–2205 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labbadia, J. & Morimoto, R. I. Suppression of the heat shock response is a programmed process at the onset of reproduction. Mol. Cell 59, 639–650 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noble, S. L., Allen, B. L., Goh, L. K., Nordick, K. & Evans, T. C. Maternal mRNAs are regulated by various P body-related mRNP granules during early Caenorhabditis elegans development. J. Cell Biol. 182, 559–572 (2008).

    “““html
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De-Souza, E. A., Thompson, M. A. & Taylor, R. C. Olfactory chemosensation prolongs lifespan through TGF-beta signaling and UPR activation. Nat. Aging 3, 938–947 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway that impacts C. elegans metabolism, reproductive maturity, and lifespan. Dev. Cell 1, 841–851 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thatcher, J. D., Haun, C. & Okkema, P. G. The DAF-3 Smad interacts with DNA and inhibits gene expression in the Caenorhabditis elegans pharynx. Development 126, 97–107 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Graca, L. S. et al. DAF-5 represents a Ski oncoprotein homologue that operates within a neuronal TGF beta pathway to modulate C. elegans dauer formation. Development 131, 435–446 (2004).

    “`Article 
    PubMed 

    Google Scholar
     

  • Thomas, J. H., Birnby, D. A. & Vowels, J. J. Indications of concurrent processing of sensory data regulating dauer formation in Caenorhabditis elegans. Genetics 134, 1105–1117 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. K. et al. TGF-beta triggers Erk MAP kinase signaling via direct phosphorylation of ShcA. EMBO J. 26, 3957–3967 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schackwitz, W. S., Inoue, T. & Thomas, J. H. Chemosensory neurons operate in parallel to mediate a pheromone response in C. elegans. Neuron 17, 719–728 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estevez, M. et al. The daf-4 gene encodes a bone morphogenetic protein receptor regulating C. elegans dauer larval development. Nature 365, 644–649 (1993).

    Article 
    CAS“`html
    PubMed

    Google Scholar

  • Meisel, J. D., Panda, O., Mahanti, P., Schroeder, F. C. & Kim, D. H. The chemosensory response to bacterial secondary metabolites influences neuroendocrine signaling and behavior in C. elegans. Cell 159, 267–280 (2014).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ren, P. et al. A TGF-beta homolog’s neuronal expression regulates C. elegans larval development. Science 274, 1389–1391 (1996).

    Article
    CAS
    PubMed

    Google Scholar

  • Grushko, D., Boocholez, H., Levine, A. & Cohen, E. The temporal roles of SKN-1/NRF as a modulator of lifespan and proteostasis in Caenorhabditis elegans. PLoS ONE 16, e0243522 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Barna, J. et al. The heat shock factor-1 integrates insulin/IGF-1, TGF-beta, and cGMP signaling pathways to influence development and aging. BMC Dev. Biol. 12, 32 (2012).

    Article
    CAS
    “`PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilchez, D. et al. RPN-6 influences C. elegans lifespan during proteotoxic stress situations. Nature 489, 263–268 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Segref, A., Torres, S. & Hoppe, T. A testable in vivo evaluation to investigate proteostasis systems in Caenorhabditis elegans. Genetics 187, 1235–1240 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunquell, J., Morris, S., Lu, Y., Cheng, F. & Westerheide, S. D. The genome-wide function of HSF-1 in the modulation of gene expression in Caenorhabditis elegans. BMC Genomics 17, 559 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage-Dunn, C. & Padgett, R. W. The TGF-beta family in Caenorhabditis elegans. Cold Spring Harb. Perspect. Biol. 9, a022178 (2017).

    ArticlePubMed 
    PubMed Central 

    Google Scholar
     

  • Krshnan, L., van de Weijer, M. L. & Carvalho, P. Protein degradation associated with the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 14, a041247 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urano, F. et al. A survival route for Caenorhabditis elegans with an obstructed unfolded protein response. J. Cell Biol. 158, 639–646 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maman, M. et al. A neuronal GPCR is essential for the initiation of the heat shock response in the nematode C. elegans. J. Neurosci. 33, 6102–6111 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prahlad, V. & Morimoto, R. I. Neuronal circuits modulate the response of Caenorhabditis elegans to misfolded proteins. Proc. Natl Acad. Sci. USA 108, 14204–14209 (2011).

    “`html
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boocholez, H. et al. Neuropeptide signaling and SKN-1 coordinate diverse responses of the proteostasis network to varying proteotoxic threats. Cell Rep. 38, 110350 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frakes, A. E. et al. Four glial cells modulate ER stress resilience and lifespan through neuropeptide communication in C. elegans. Science 367, 436–440 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teixeira-Castro, A. et al. Serotonergic communication diminishes ataxin 3 aggregation and neurotoxicity in animal models of Machado–Joseph disease. Brain 138, 3221–3237 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatum, M. C. et al. Neuronal serotonin discharge activates the heat shock response in C. elegans without a rise in temperature. Curr. Biol. 25, 163–174 (2015).

    “`Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodge, F., Bajuszova, V. & van Oosten-Hawle, P. The gut as a tissue that supports lifespan and proteostasis through signaling. Front. Aging 3, 897741 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, D., Estevez, A. & Riddle, D. L. Opposing Smad transcription factors regulate the dauer/non-dauer transition in C. elegans. Development 137, 477–485 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H. & Cohen, E. The neuronal system’s regulation of the proteostasis network. Front. Mol. Biosci. 10, 1290118 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salminen, A., Kaarniranta, K. & Kauppinen, A. Insulin/IGF-1 signaling enhances immune suppression through the STAT3 pathway: effects on the aging process and age-associated diseases. Inflamm. Res. 70, 1043–1061 (2021).

    “`html
    Article
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, D. et al. A response mediated by PQM-1 initiates transcellular chaperone signaling and modulates organismal proteostasis. Cell Rep. 23, 3905–3919 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miles, J. et al. Transcellular chaperone signaling constitutes an intercellular stress-response separate from the HSF-1-mediated heat shock response. PLoS Biol. 21, e3001605 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt eliminates adapter sequences from high-throughput sequencing reads. EMBnet J. (2011).

    Article 

    Google Scholar
     

  • Kim, D. et al. TopHat2: precise alignment of transcriptomes in the presence of insertions, deletions, and gene fusions. Genome Biol. 14, R36 (2013).

    “`Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework for handling high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • This page has been generated programmatically, to view the article at its original site you can follow the link below:
    https://www.nature.com/articles/s41556-024-01564-y
    and if you wish to remove this article from our site please reach out to us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Temple Ambler’s Ultimate Esports and Gaming Hub

    This page was generated programmatically; to view the article in its initial location, please visit…

    3 weeks ago

    Exploring the Heartbeat of Innovation: Northwestern University Unveiled

    This webpage was generated automatically, to view the article in its original setting you can…

    3 weeks ago

    “Prepare for the Ultimate Gameplay Revolution: ‘inZOI’ Set to Dethrone The Sims!”

    This page was generated automatically; to view the article at its initial source, please follow…

    3 weeks ago

    “Leveling Up: Understanding Gaming Addiction Among Students”

    This webpage was generated automatically; to read the article at its original site, you can…

    3 weeks ago

    “How a York Car Park Scam Unexpectedly Enrolled Me in a Gaming Subscription!”

    This webpage was generated automatically; to view the article in its original setting, you can…

    3 weeks ago

    Turner Shines Bright: RMAC Swimmer of the Week Honors Awarded!

    This page was generated automatically; to view the article in its original context, you can…

    3 weeks ago