Categories: Science

Unveiling the Blueprint: Comprehensive Human Recombination Maps in Nature


This webpage was generated automatically; to access the article in its authentic location, you may proceed to the link below:
https://www.nature.com/articles/s41586-024-08450-5
and should you wish to eliminate this article from our site, please get in touch with us


  • Halldorsson, B. V. et al. Investigating mutagenic impacts of recombination using a sequence-level genetic map. Science 363, eaau1043 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kong, A. et al. A detailed recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bhérer, C., Campbell, C. L. & Auton, A. Enhanced genetic maps demonstrate sexual dimorphism in human meiotic recombination across various scales. Nat. Commun. 8, 14994 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. & Weber, J. L. In-depth human genetic maps: individual and sex-specific disparities in recombination. Am. J. Hum. Genet. 63, 861 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central“`html

    Google Scholar
     

  • Frazer, K. A. et al. A second generation human haplotype map comprising over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Haber, J. Genome Stability (Garland Science, 2013).

  • Zickler, D. & Kleckner, N. Homologous recombination, pairing, and synapsis during meiosis. Cold Spring Harb. Perspect. Biol. 7, 1–28 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bergman, J. & Schierup, M. H. Evolutionary patterns of pseudoautosomal region 1 in humans and great apes. Genome Biol. 23, 215 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jónsson, H. et al. Influence of parents on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519–522 (2017).

    Article 
    ADS 
    “““html
    PubMed

    Google Scholar

  • Pratto, F. et al. Maps of recombination initiation from individual human genomes. Science 346, 1256442 (2014).

  • Hinch, R., Donnelly, P. & Hinch, A. G. Meiotic DNA breaks instigate multifaceted mutagenesis in the human germ line. Science 382, eadh2531 (2023).

    Article
    CAS
    PubMed
    PubMed Central
    MATH

    Google Scholar

  • Sun, H., Treco, D., Schultes, N. P. & Szostak, J. W. Double-strand breaks at a site of initiation for meiotic gene conversion. Nature 338, 87–90 (1989).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Baudat, F. et al. PRDM9 is a significant factor of meiotic recombination hotspots in both humans and mice. Science 327, 836–840 (2010).

    Article
    ADS
    CAS
    PubMed
    MATH

    Google Scholar

  • Robert, T. et al. The TopoVIB-like protein family is necessary
    “`for meiotic DNA double-strand break emergence. Science 351, 943–949 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are produced by Spo11, a constituent of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair mechanism for recombination. Cell 33, 25–35 (1983).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zickler, D. & Kleckner, N. Meiosis: interactions between homologs. Annu. Rev. Genet. 57, 1–63 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J.-M., Cooper, D. N., Chuzhanova, N., Férec, C. & Patrinos, G. P. Gene conversion: mechanisms, evolution, and human diseases. Nat. Rev. Genet. 8, 762–775 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Handel, M. A. & Schimenti, J. C. The genetics of mammalian meiosis: regulation, dynamics and implications for fertility. Nat. Rev. Genet. 11, 124–136 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gray, S. & Cohen, P. E. Regulation of meiotic crossovers: from the formation of double-strand breaks to their specification. Annu. Rev. Genet. 50, 175–210 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Collins, J. K. & Jones, K. T. Responses to DNA damage in mammalian oocytes. Reproduction 152, R15–R22 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gudbjartsson, D. F. et al. Variants in sequence identified through whole genome sequencing of a large cohort of Icelanders. Sci. Data 2, 150011 (2015).

    “`html
    Article
    PubMed
    PubMed Central

    Google Scholar

  • Hardarson, M. T., Palsson, G. & Halldorsson, B. V. NCOurd: modeling length distributions of NCO events and gene conversion tracts. Bioinformatics 39, btad485 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Halldorsson, B. V. et al. The frequency of meiotic gene conversion is influenced by sex and age. Nat. Genet. 48, 1377–1384 (2016).

    Article
    CAS
    PubMed
    PubMed Central
    MATH

    Google Scholar

  • Williams, A. L. et al. Non-crossover gene conversions exhibit a pronounced GC bias and surprising clustering in humans. eLife 4, e04637 (2015).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Browning, S. R. &…
    “`

    Browning, B. L. Biobank-scale inference of multi-individual identity by descent and gene conversion. Am. J. Hum. Genet. 111, 691–700 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tiemann-Boege, I., Schwarz, T., Striedner, Y. & Heissl, A. The repercussions of sequence erosion in the progression of recombination hotspots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160462 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostka, D., Hubisz, M. J., Siepel, A. & Pollard, K. S. The significance of GC-biased gene conversion in influencing the rapidly evolving sections of the human genome. Mol. Biol. Evol. 29, 1047–1057 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jeffreys, A. J. & May, C. A. Intense and highly focused gene conversion activity in human meiotic crossover hotspots. Nat. Genet. 36, 151–156 (2004).

    Article 
    CAS 
    PubMed 
    MATH“`html

    Google Scholar
     

  • Wall, J. D., Robinson, J. A. & Cox, L. A. High-precision evaluations of crossover and noncrossover recombination from a controlled baboon colony. Genome Biol. Evol. 14, evac040 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Versoza, C. J. et al. Fresh perspectives on the realm of crossover and noncrossover occurrences in rhesus macaques (Macaca mulatta). Genome Biol. Evol. 16, evad223 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Cole, F. et al. Tetrad examination in mice reveals aspects of recombination processes and hotspot evolutionary dynamics. Nat. Genet. 46, 1072–1080 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mimitou, E. P., Yamada, S. & Keeney, S. A worldwide perspective on meiotic double-strand break end resection. Science 355, 40–45 (2017).

    Article 
    ADS 
    CAS 
    “““html
    PubMed
    PubMed Central

    Google Scholar

  • Paiano, J. et al. ATM and PRDM9 influence SPO11-bound recombination intermediates throughout meiosis. Nat. Commun. 11, 1–15 (2020).

    Article
    ADS

    Google Scholar

  • Oliver-Bonet, M., Campillo, M., Turek, P. J., Ko, E. & Martin, R. H. Assessment of replication protein A (RPA) during human spermatogenesis. Mol. Hum. Reprod. 13, 837–844 (2007).

    Article
    CAS
    PubMed
    MATH

    Google Scholar

  • Lenzi, M. L. et al. Significant heterogeneity in the molecular processes leading to the formation of chiasmata during meiosis I in human oocytes. Am. J. Hum. Genet. 76, 112–127 (2005).

    Article
    CAS
    PubMed
    MATH

    Google Scholar

  • Wang, S. et al. Per-nucleus crossover covariation and its implications for evolution. Cell 177, 326–338.e16 (2019).

    Article
    CAS
    “““html
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Martini, E., Diaz, R. L., Hunter, N. & Keeney, S. Crossover homeostasis in yeast meiosis. Cell (2006).

  • Altemose, N. et al. A chart of human PRDM9 binding offers proof for new behaviors of PRDM9 and additional zinc-finger proteins during meiosis. eLife 6, e28383 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci through integrative epigenomics. Nature 590, 300–307 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, A. et al. Detailed recombination rate variations among sexes, populations, and individuals. Nature 467, 1099–1103 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    “`MATH 

    Google Scholar
     

  • Powers, N. R. et al. The meiotic recombination initiator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLoS Genet. 12, e1006146 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pai, C. C. et al. A histone H3K36 chromatin shift regulates DNA double-strand break repair pathway selection. Nat. Commun. 5, 4091 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Baudat, F. & de Massy, B. Controlling double-strand DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosom. Res. 15, 565–577 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hinch, A. G. et al. Elements influencing meiotic recombination uncovered by whole-genome sequencing of individual sperm. Science 363, eaau8861 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central“`html
    MATH 

    Google Scholar
     

  • Centola, M. & Carbon, J. Cloning and analysis of centromeric DNA from Neurospora crassa. Mol. Cell. Biol. 14, 1510–1519 (1994).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Puechberty, J. et al. Genetic and physical investigations of the centromeric and pericentromeric areas of human chromosome 5: recombination across 5cen. Genomics 56, 274–287 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahtani, M. M. & Willard, H. F. Genetic and physical mapping of the human X chromosome centromere: inhibition of recombination. Genome Res. 8, 100–110 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vincenten, N. et al. The kinetochore inhibits centromere-proximal crossover recombination during meiosis. eLife 4, e10850 (2015).

    Article 
    PubMed 
    PubMed Central 
    “`
    Google Scholar

  • Lindahl, T. Instability and degradation of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article
    CAS
    ADS
    CAS
    PubMed
    MATH

    Google Scholar

  • Chan, K. & Gordenin, D. A. Groups of multiple mutations: frequency and molecular mechanisms. Annu. Rev. Genet. 49, 243–267 (2015).

    Article
    CAS
    PubMed
    PubMed Central
    MATH

    Google Scholar

  • Pratto, F. et al. Meiotic recombination reflects patterns of germline replication in both mice and humans. Cell (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Neri, F. et al. Intragenic DNA methylation obstructs erroneous transcription initiation. Nature 543, 72–77 (2017).

    Article“`html
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldmann, J. M. et al. Germline de novo mutation clusters develop during oocyte aging in genomic areas with elevated double-strand-break frequency. Nat. Genet. 50, 487–492 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kong, A. et al. Recombination frequency and reproductive success in humans. Nat. Genet. 36, 1203–1206 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Martin, H. C. et al. Multicohort investigation of the maternal age impact on recombination. Nat. Commun. 6, 7846 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, R. et al. A detailed map of non-crossover occurrences reveals the influence of genetic variation on mammalian meiotic recombination. Nat. Commun. 10, 3900 (2019).

    “`

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • de Boer, E., Jasin, M. & Keeney, S. Local and gender-specific biases in crossover vs. noncrossover results at meiotic recombination hotspots in mice. Genes Dev. 29, 1721–1733 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Boer, E., Stam, P., Dietrich, A. J. J., Pastink, A. & Heyting, C. Two tiers of interference in mouse meiotic recombination. Proc. Natl Acad. Sci. USA 103, 9607–9612 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. & Xu, X. Microhomology-mediated end joining: new members join the team. Cell Biosci. 7, 6 (2017).

    Article 
    PubMed“`html
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wartosch, L. et al. Sources and mechanisms contributing to aneuploidy in human oocytes. Prenat. Diagn. 41, 620–630 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Steinthorsdottir, V. et al. Variant in the synaptonemal complex protein SYCE2 correlates with pregnancy loss due to its impact on recombination. Nat. Struct. Mol. Biol. (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, A. et al. Identification of sharing by descent, extended phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kong, A. et al. Ancestral origin of sequence variants associated with complex diseases.
    “`

    Nature 462, 868–874 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schneider, V. A. et al. Assessment of GRCh38 and de novo haploid genome assemblies highlights the persistent quality of the reference assembly. Genome Res. 27, 849–864 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cheung, V. G. et al. Incorporation of cytogenetic landmarks within the draft sequence of the human genome. Nature 409, 953–958 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Furey, T. S. & Haussler, D. Merging of the cytogenetic map and the draft human genome sequence. Hum. Mol. Genet. 12, 1037–1044 (2003).

    Article 
    CASPubMed 
    MATH 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: assessments in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

  • Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: present condition, taxonomic growth, and functional characterization. Nucleic Acids Res. 44, D733–D745 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Pálsson, G. DecodeGenetics/PalssonEtAl_Nature_2024: preliminary release of data. Zenodo (2024).


  • This page was generated automatically. To read the article in its original source, please visit the link below:
    https://www.nature.com/articles/s41586-024-08450-5
    and should you wish to remove this article from our website, please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Temple Ambler’s Ultimate Esports and Gaming Hub

    This page was generated programmatically; to view the article in its initial location, please visit…

    1 month ago

    Exploring the Heartbeat of Innovation: Northwestern University Unveiled

    This webpage was generated automatically, to view the article in its original setting you can…

    1 month ago

    “Prepare for the Ultimate Gameplay Revolution: ‘inZOI’ Set to Dethrone The Sims!”

    This page was generated automatically; to view the article at its initial source, please follow…

    1 month ago

    “Leveling Up: Understanding Gaming Addiction Among Students”

    This webpage was generated automatically; to read the article at its original site, you can…

    1 month ago

    “How a York Car Park Scam Unexpectedly Enrolled Me in a Gaming Subscription!”

    This webpage was generated automatically; to view the article in its original setting, you can…

    1 month ago

    Turner Shines Bright: RMAC Swimmer of the Week Honors Awarded!

    This page was generated automatically; to view the article in its original context, you can…

    1 month ago