Categories: Science

Spatiotemporal faunal connectivity throughout world sea flooring

This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09307-1
and if you wish to take away this text from our web site please contact us


  • Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Victorero, L. et al. Global benthic biogeographical areas and macroecological drivers for ophiuroids. Ecography 2023, e06627 (2023).


    Google Scholar
     

  • Woolley, S. N. C. et al. Deep-sea range patterns are formed by vitality availability. Nature 533, 393–396 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabosky, D. L. et al. An inverse latitudinal gradient in speciation price for marine fishes. Nature 559, 392–395 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Hara, T. D., Hugall, A. F., Woolley, S. N. C., Bribiesca-Contreras, G. & Bax, N. J. Contrasting processes drive ophiuroid phylodiversity throughout shallow and deep seafloors. Nature 565, 636–639 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McClain, C. R. & Hardy, S. M. The dynamics of biogeographic ranges within the deep-sea. Proc. Roy. Soc. B 277, 3533–3546 (2010).


    Google Scholar
     

  • Taylor, M. L. & Roterman, C. N. Invertebrate inhabitants genetics throughout Earth’s largest habitat: the deep-sea ground. Mol. Ecol. 26, 4872–4896 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Hara, T. & Hugall, A. Global seafloor connectivity over evolutionary time. Dryad (2025).

  • Stöhr, S., O’Hara, T. D. & Thuy, B. Global range of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE 7, e31940 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Hara, T. D., Hugall, A. F., Thuy, B. & Moussalli, A. Phylogenomic decision of the Class Ophiuroidea unlocks a world microfossil document. Curr. Biol. 24, 1874–1879 (2014).

    PubMed 

    Google Scholar
     

  • O’Hara, T. D., Thuy, B. & Hugall, A. F. Relict from the Jurassic: new household of brittle-stars from a New Caledonian seamount. Proc. Roy. Soc. B 288, 20210684 (2021).


    Google Scholar
     

  • O’Hara, T. D., Hugall, A. F., Thuy, B., Stöhr, S. & Martynov, A. V. Restructuring greater taxonomy utilizing broad-scale phylogenomics: the dwelling Ophiuroidea. Mol. Phylogenet. Evol. 107, 415–430 (2017).

    PubMed 

    Google Scholar
     

  • Friedman, S. T. & Muñoz, M. M. A latitudinal gradient of deep-sea invasions for marine fishes. Nat. Commun. 14, 773 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mironov, A. N., Dilman, A. & Kylova, E. M. Global distribution patterns of genera occurring within the Arctic Ocean deeper 2000 m. Invertebr. Zool. 10, 167–194 (2013).


    Google Scholar
     

  • Thuy, B. et al. Ancient origin of the fashionable deep-sea fauna. PLoS ONE 7, e46913 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crame, J. A. & McGowan, A. J. Origin of the tropical–polar biodiversity distinction. Glob. Ecol. Biogeogr. 31, 1207–1227 (2022).


    Google Scholar
     

  • Bluhm, B. A. et al. Diversity of the Arctic deep-sea benthos. Mar. Biodivers. 41, 87–107 (2011).


    Google Scholar
     

  • Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. The significance of offshore origination revealed via ophiuroid phylogenomics. Proc. Roy. Soc. B 284, 20170160 (2017).


    Google Scholar
     

  • Brown, A. & Thatje, S. Explaining bathymetric range patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol. Rev. Camb. Philos. Soc. 89, 406–426 (2014).

    PubMed 

    Google Scholar
     

  • Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. Spatio-temporal patterns of tropical shallow-water brittle stars. J. Biogeogr. 46, 1287–1299 (2019).


    Google Scholar
     

  • Vermeij, G. J. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17, 281–307 (1991).


    Google Scholar
     

  • Tierney, J. E. et al. Glacial cooling and local weather sensitivity revisited. Nature 584, 569–573 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimal zones within the japanese tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    ADS 

    Google Scholar
     

  • Khon, V. C., Hoogakker, B. A. A., Schneider, B., Segschneider, J. & Park, W. Effect of an open Central American Seaway on ocean circulation and the oxygen minimal zone within the tropical Pacific from mannequin simulations. Geophys. Res. Lett. 50, e2023GL103728 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • O’Hara, T. D., England, P. R., Gunasekera, R. & Naughton, Okay. M. Limited phylogeographic construction for 5 bathyal ophiuroids at continental scales. Deep Sea Res. I 84, 18–28 (2014).


    Google Scholar
     

  • O’Hara, T. D. & Thuy, B. Biogeography and taxonomy of Ophiuroidea (Echinodermata) from the Îles Saint-Paul and Amsterdam within the southern Indian Ocean. Zootaxa 5124, 1–49 (2022).


    Google Scholar
     

  • Branch, T. A. A assessment of orange roughy Hoplostethus atlanticus fisheries, estimation strategies, biology and inventory construction. S. Afr. J. Mar. Sci. 23, 181–203 (2001).


    Google Scholar
     

  • Tong, R. et al. Environmental drivers and the distribution of cold-water corals within the world ocean. Front. Mar. Sci. (2023).

  • Henry, L.-A. et al. Global ocean conveyor lowers extinction threat within the deep sea. Deep Sea Res. I 88, 8–16 (2014).

    CAS 

    Google Scholar
     

  • Gubili, C. et al. Species range within the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata). Deep Sea Res. II 137, 288–296 (2017).


    Google Scholar
     

  • Meißner, Okay., Schwentner, M., Götting, M., Knebelsberger, T. & Fiege, D. Polychaetes distributed throughout oceans—examples of broadly recorded species from abyssal depths of the Atlantic and Pacific Oceans. Zool. J. Linn. Soc. 199, 906–944 (2023).


    Google Scholar
     

  • Kaiser, S. et al. Diversity, distribution and composition of abyssal benthic Isopoda in a area proposed for deep-seafloor mining of polymetallic nodules: a synthesis. Mar. Biodivers. 53, 30 (2023).


    Google Scholar
     

  • Meckler, A. N. et al. Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. Science 377, 86–90 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Auderset, A. et al. Enhanced ocean oxygenation throughout Cenozoic heat intervals. Nature 609, 77–82 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a potential abyssal mine discipline. Curr. Biol. 29, 3909–3912 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Christodoulou, M. et al. Unexpected excessive abyssal ophiuroid range in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Young, C. M., Sewell, M. A., Tyler, P. A. & Metaxas, A. Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the function of larval dispersal. Biodivers. Conserv. 6, 1507–1522 (1997).


    Google Scholar
     

  • Ricklefs, R. E. A complete framework for world patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004).


    Google Scholar
     

  • Ree, R. H., Webb, C. O. & Donoghue, M. J. A probability framework for inferring the evolution of geographic vary on phylogenetic bushes. Evolution 59, 2299–2311 (2005).

    PubMed 

    Google Scholar
     

  • Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal results between geographic vary evolution and diversification. Syst. Biol. 60, 451–465 (2011).

    PubMed 

    Google Scholar
     

  • Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian evaluation of biogeography when the variety of areas is giant. Syst. Biol. 62, 789–804 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, P. O. A probability strategy to estimating phylogeny from discrete morphological character information. Syst. Biol. 50, 913–925 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Vermeij, G. J. et al. The temperate marine Peruvian Province: how historical past accounts for its uncommon biota. Ecol. Evol. 14, e70048 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollyman, P. R. et al. Bioregionalization of the South Sandwich Islands via group evaluation of bathyal fish and invertebrate assemblages utilizing fishery-derived information. Deep Sea Res. II 198, 105054 (2022).


    Google Scholar
     

  • Hugall, A. F., O’Hara, T. D., Hunjan, S., Nilsen, R. & Moussalli, A. An exon-capture system for your complete class Ophiuroidea. Mol. Biol. Evol. 33, 281–294 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Parey, E. et al. The brittle star genome illuminates the genetic foundation of animal appendage regeneration. Nat. Ecol. Evol. 8, 1505–1521 (2024).

  • Stamatakis, A. RAxML-VI-HPC: most likelihood-based phylogenetic analyses with hundreds of taxa and combined fashions. Bioinformatics 22, 2688–2690 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a quick, scalable and user-friendly device for optimum probability phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation utilizing penalized probability for giant phylogenies. Bioinformatics 28, 2689–2690 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary evaluation by sampling bushes. BMC Evol. Biol. 7, 214 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Title, P. O. et al. The macroevolutionary singularity of snakes. Science 383, 918–923 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Henríquez-Piskulich, P., Hugall, A. F. & Stuart-Fox, D. A supermatrix phylogeny of the world’s bees (Hymenoptera: Anthophila). Mol. Phylogenet. Evol. 190, 107963 (2024).

    PubMed 

    Google Scholar
     

  • FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).


    Google Scholar
     

  • Sanmartín, I. & Meseguer, A. S. Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage. Front. Genet. 7, 35 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paradis, E., Claude, J. & Strimmer, Okay. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Revell, L. J. phytools: an R package deal for phylogenetic comparative biology (and different issues). Methods Ecol. Evol. 3, 217–223 (2012).


    Google Scholar
     

  • Morlon, H. et al. RPANDA: an R package deal for macroevolutionary analyses on phylogenetic bushes. Methods Ecol. Evol. 7, 589–597 (2016).


    Google Scholar
     

  • Stadler, T. Simulating bushes with a hard and fast variety of extant species. Syst. Biol. 60, 676–684 (2011).

    PubMed 

    Google Scholar
     

  • Mazet, N., Morlon, H., Fabre, P.-H. & Condamine, F. L. Estimating clade-specific diversification charges and palaeodiversity dynamics from reconstructed phylogenies. Methods Ecol. Evol. 14, 2575–2591 (2023).


    Google Scholar
     

  • Louca, S. & Pennell, M. W. Why extinction estimates from extant phylogenies are so typically zero. Curr. Biol. 31, 3168–3173 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Louca, S. & Doebeli, M. Efficient comparative phylogenetics on giant bushes. Bioinformatics 34, 1053–1055 (2017).


    Google Scholar
     

  • Swenson, N. G. Phylogenetic beta range metrics, trait evolution and inferring the practical beta range of communities. PLoS ONE 6, e21264 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tucker, C. M. et al. A information to phylogenetic metrics for conservation, group ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).

    PubMed 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Community Ecology Package. R package deal v.2.5-6 (CRAN, 2019).

  • Ivan, J. et al. Temperature predicts the speed of molecular evolution in Australian Eugongylinae skinks. Evolution 76, 252–261 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Orton, M. G., May, J. A., Ly, W., Lee, D. J. & Adamowicz, S. J. Is molecular evolution sooner within the tropics? Heredity 122, 513–524 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in fashions of trait dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    PubMed 

    Google Scholar
     

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances round visualization in R. Bioinformatics 30, 2811–2812 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • GEBCO Bathymetric Compilation Group 2019. The GEBCO_2019 Grid – a steady terrain mannequin of the worldwide oceans and land. British Oceanographic Data Centre (2019).

  • Boyer, T. P. et al. World Ocean Atlas 2018. Temperature, Salinity and Dissolved Oxygen. (NOAA National Centers for Environmental Information, accessed 22 May 2020); www.ncei.noaa.gov/archive/accession/NCEI-WOA18.


  • This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09307-1
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago