Categories: Science

Atomic dynamics of gas-dependent oxide reducibility

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09394-0
and if you wish to take away this text from our web site please contact us


  • Manzoor, U., Mujica Roncery, L., Raabe, D. & Souza Filho, I. R. Sustainable nickel enabled by hydrogen-based discount. Nature 641, 365–373 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spreitzer, D. & Schenk, J. Reduction of iron oxides with hydrogen—a evaluate. Steel Res. Int. 90, 1900108 (2019).


    Google Scholar
     

  • Chee, S. W., Lunkenbein, T., Schlögl, R. & Roldán Cuenya, B. Operando electron microscopy of catalysts: the lacking cornerstone in heterogeneous catalysis analysis? Chem. Rev. 123, 13374–13418 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chenna, S., Banerjee, R. & Crozier, P. A. Atomic-scale commentary of the Ni activation course of for partial oxidation of methane utilizing in situ environmental TEM. ChemCatChem 3, 1051–1059 (2011).

    CAS 

    Google Scholar
     

  • Zeng, L., Cheng, Z., Fan, J. A., Fan, L. S. & Gong, J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem. 2, 349–364 (2018).

    CAS 

    Google Scholar
     

  • Wei, S., Ma, Y. & Raabe, D. One step from oxides to sustainable bulk alloys. Nature 633, 816–822 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. Y., Rodriguez, J. A., Hanson, J. C., Frenkel, A. I. & Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic results within the formation of suboxides. J. Am. Chem. Soc. 125, 10684–10692 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X., Hanson, J. C., Frenkel, A. I., Kim, J.-Y. & Rodriguez, J. A. Time-resolved research for the mechanism of discount of copper oxides with carbon monoxide: complicated conduct of lattice oxygen and the formation of suboxides. J. Phys. Chem. B 108, 13667–13673 (2004).

    CAS 

    Google Scholar
     

  • Rodriguez, J. A., Hanson, J. C., Frenkel, A. I., Kim, J. Y. & Pérez, M. Experimental and theoretical research on the response of H2 with NiO: Role of O vacancies and mechanism for oxide discount. J. Am. Chem. Soc. 124, 346–354 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Luo, L. et al. Atomic origins of water-vapour-promoted alloy oxidation. Nat. Mater. 17, 514–518 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zou, L., Li, J., Zakharov, D. N., Stach, E. A. & Zhou, G. In situ atomic-scale imaging of the metallic/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Yuan, W. et al. Visualizing H2O molecules reacting at TiO2 lively websites with transmission electron microscopy. Science 367, 428–430 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lagrow, A. P., Ward, M. R., Lloyd, D. C., Gai, P. L. & Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139, 179–185 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Atomic origin of the autocatalytic discount of monoclinic CuO in a hydrogen ambiance. J. Phys. Chem. Lett. 12, 9547–9556 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interaction between metallic nanoparticles and oxide assist below redox situations. Science 376, 4–8 (2022).


    Google Scholar
     

  • Rukini, A., Rhamdhani, M. A., Brooks, G. A. & Van den Bulck, A. Metals manufacturing and metallic oxides discount utilizing hydrogen: a evaluate. J. Sustain. Metall. 8, 1–24 (2022).


    Google Scholar
     

  • Chen, J. & Hayes, P. C. Mechanisms and kinetics of discount of strong NiO in CO/CO2 and CO/Ar fuel mixtures. Metall. Mater. Trans. B 50, 2623–2635 (2019).

    CAS 

    Google Scholar
     

  • Krasuk, J. H. & Smith, J. M. Kinetics of discount of nickel oxide with CO. AIChE J. 18, 506–512 (1972).

    CAS 
    ADS 

    Google Scholar
     

  • Antola, O., Holappa, L. & Paschen, P. Nickel ore discount by hydrogen and carbon monoxide containing gases. Miner. Process. Extr. Metall. Rev. 15, 169–179 (1995).

    CAS 

    Google Scholar
     

  • Scholz, J. J. & Langell, M. A. Kinetic evaluation of floor discount in transition metallic oxide single crystals. Surf. Sci. 164, 543–557 (1985).

    CAS 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Effect of the chemical states of copper on methanol decomposition and oxidation. J. Phys. Chem. C 128, 4559–4572 (2024).

    CAS 

    Google Scholar
     

  • Swallow, J. E. N. et al. Revealing the position of CO throughout CO2 hydrogenation on Cu surfaces with in situ comfortable X-ray spectroscopy. J. Am. Chem. Soc. 145, 6730–6740 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peck, M. A. & Langell, M. A. Comparison of nanoscaled and bulk NiO structural and environmental traits by XRD, XAFS, and XPS. Chem. Mater. 24, 4483–4490 (2012).

    CAS 

    Google Scholar
     

  • Furstenau, R. P., McDougall, G. & Langell, M. A. Initial phases of hydrogen discount of NiO(100). Surf. Sci. 150, 55–79 (1985).

    CAS 
    ADS 

    Google Scholar
     

  • Norby, T. Protonic defects in oxides and their attainable position in excessive temperature oxidation. J. Phys. IV 3, C9-99–C9-106 (1993).


    Google Scholar
     

  • Li, S., Ding, W., Meitzner, G. D. & Iglesia, E. Spectroscopic and transient kinetic research of web site necessities in iron-catalyzed Fischer–Tropsch synthesis. J. Phys. Chem. B 106, 85–91 (2002).

    CAS 

    Google Scholar
     

  • Janbroers, S., Crozier, P. A., Zandbergen, H. W. & Kooyman, P. J. A mannequin research on the carburization technique of iron-based Fischer–Tropsch catalysts utilizing in situ TEM–EELS. Appl. Catal. B 102, 521–527 (2011).

    CAS 

    Google Scholar
     

  • Andersson, D. A., Simak, S. I., Skorodumova, N. V., Abrikosov, I. A. & Johansson, B. Optimization of ionic conductivity in doped ceria. Proc. Natl Acad. Sci. USA 103, 3518–3521 (2006).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Matsubu, J. C. et al. Adsorbate-mediated sturdy metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Atomic‐scale mechanism of unidirectional oxide development. Adv. Funct. Mater. 30, 1906504 (2020).

    CAS 

    Google Scholar
     

  • Boyes, E. D. & Gai, P. L. Environmental excessive decision electron microscopy and functions to chemical science. Ultramicroscopy 67, 219–232 (1997).

    CAS 

    Google Scholar
     

  • Gai, P. L. et al. Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bull. 32, 1044–1050 (2007).

    CAS 

    Google Scholar
     

  • Gai, P. L., Lari, L., Ward, M. R. & Boyes, E. D. Visualisation of single atom dynamics and their position in nanocatalysts below managed response environments. Chem. Phys. Lett. 592, 355–359 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • LaGrow, A. P., Lloyd, D. C., Gai, P. L. & Boyes, E. D. In situ scanning transmission electron microscopy of Ni nanoparticle redispersion by way of the discount of hole NiO. Chem. Mater. 30, 197–203 (2018).

    CAS 

    Google Scholar
     

  • Helveg, S. et al. Atomic-scale imaging of carbon nanofibre development. Nature 427, 426–429 (2004).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yoshida, H. et al. Visualizing fuel molecules interacting with supported nanoparticulate catalysts at response situations. Science 335, 317–319 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Xie, D. G. et al. In situ research of the initiation of hydrogen bubbles on the aluminium metallic/oxide interface. Nat. Mater. 14, 899–903 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges within the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons with concept. Phys. Rev. B 26, 614–635 (1982).

    CAS 
    ADS 

    Google Scholar
     

  • Sparrow, T. G., Williams, B. G., Rao, C. N. R. & Thomas, J. M. L3/L2 white-line depth ratios within the electron energy-loss spectra of threed transition-metal oxides. Chem. Phys. Lett. 108, 547–550 (1984).

    CAS 
    ADS 

    Google Scholar
     

  • Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C. & McIntyre, N. S. New interpretations of XPS spectra of nickel metallic and oxides. Surf. Sci. 600, 1771–1779 (2006).

    CAS 
    ADS 

    Google Scholar
     

  • Carley, A. F., Jackson, S. D., O’Shea, J. N. & Roberts, M. W. The formation and characterisation of Ni3+—an X-ray photoelectron spectroscopic investigation of potassium-doped Ni (110)–O. Surf. Sci. 440, L868–L874 (1999).

    CAS 
    ADS 

    Google Scholar
     

  • McIntyre, N. S. & Zetaruk, D. G. X-ray photoelectron spectroscopic research of iron oxides. Anal. Chem. 49, 1521–1529 (1977).

    CAS 

    Google Scholar
     

  • Zhao, X. et al. Multiple metal-nitrogen bonds synergistically boosting the exercise and sturdiness of high-entropy alloy electrocatalysts. J. Am. Chem. Soc. 146, 3010–3022 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anisimov, V. I., Zaanen, J. & Andersen, O. Ok. Band concept and Mott insulators: Hubbard U as a substitute of Stoner I. Phys. Rev. B 44, 943 (1991).

    CAS 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüler, J. Efficient iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio complete power calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758 (1999).

    CAS 
    ADS 

    Google Scholar
     

  • Xu, Q., Cheah, S. & Zhao, Y. Initial discount of the NiO(100) floor in hydrogen. J. Chem. Phys. 139, 024704 (2013).

    PubMed 
    ADS 

    Google Scholar
     

  • Ferrari, A. M., Pisani, C., Cinquini, F., Giordano, L. & Pacchioni, G. Cationic and anionic vacancies on the NiO(100) floor: DFT + U and hybrid practical density practical concept calculations. J. Chem. Phys. 127, 174711 (2007).

    PubMed 
    ADS 

    Google Scholar
     

  • Jeon, J., Yu, B. D. & Hyun, S. Adsorption properties of transition metallic atoms on strongly correlated NiO(001) surfaces with floor oxygen vacancies. Curr. Appl. Phys. 15, 679–682 (2015).

    ADS 

    Google Scholar
     

  • Silvi, B. & Savin, A. Classification of chemical bonds primarily based on topological evaluation of electron localization features. Nature 371, 683–686 (1994).

    CAS 
    ADS 

    Google Scholar
     

  • Jónsson, H., Mills, G. & Jacobsen, Ok. W. in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J. et al.) 385–404 (World Scientific, 1998).

  • He, Y., Dulub, O., Cheng, H., Selloni, A. & Diebold, U. Evidence for the predominance of subsurface defects on decreased anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009).

    PubMed 
    ADS 

    Google Scholar
     

  • Yu, J., Rosso, Ok. M. & Bruemmer, S. M. Charge and ion transport in NiO and elements of Ni oxidation from first ideas. J. Phys. Chem. C 116, 1948–1954 (2012).

    CAS 

    Google Scholar
     

  • Wagner Jr, J. B. in Defects and Transport in Oxides (eds Seltzer, M. S. & Jaffee, R. I.) 283–301 (Springer, 1974).

  • Malyshev, O. B. & Middleman, Ok. J. In situ ultrahigh vacuum residual fuel analyzer ‘calibration’. J. Vac. Sci. Technol. A 26, 1474–1479 (2008).

    CAS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09394-0
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago