This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09375-3
and if you wish to take away this text from our website please contact us
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the weather in stars. Rev. Mod. Phys. 29, 547–650 (1957).
Kippenhahn, R., Weigert, A. & Weiss, A. Stellar Structure and Evolution (Springer, 2013).
Arcones, A. & Thielemann, F.-Okay. Origin of the weather. Astron. Astrophys. Rev. 31, 1 (2023).
Woosley, S. E. & Weaver, T. A. The evolution and explosion of huge stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181 (1995).
Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of huge stars. Rev. Mod. Phys. 74, 1015–1071 (2002).
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How huge single stars finish their life. Astrophys. J. 591, 288–300 (2003).
Woosley, S. E. & Janka, H. T. The physics of core-collapse supernovae. Nat. Phys. 1, 147–154 (2005).
Müller, B. The standing of multi-dimensional core-collapse supernova fashions. Publ. Astron. Soc. Aust. 33, e048 (2016).
Woosley, S. E. Pulsational pair-instability supernovae. Astrophys. J. 836, 244 (2017).
Crowther, P. A. Physical properties of Wolf-Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).
Matheson, T., Filippenko, A. V., Chornock, R., Leonard, D. C. & Li, W. Helium emission traces within the Type Ic supernova 1999CQ. Astron. J. 119, 2303–2310 (2000).
Pastorello, A. et al. A large outburst two years earlier than the core-collapse of an enormous star. Nature 447, 829–832 (2007).
Gal-Yam, A. et al. A WC/WO star exploding inside an increasing carbon–oxygen–neon nebula. Nature 601, 201–204 (2022).
Perley, D. A. et al. The Type Icn SN 2021csp: implications for the origins of the quickest supernovae and the fates of Wolf–Rayet stars. Astrophys. J. 927, 180 (2022).
Maeda, Okay. & Moriya, T. J. Properties of Type Ibn supernovae: implications for the progenitor evolution and the origin of a inhabitants of fast transients. Astrophys. J. 927, 25 (2022).
Bellm, E. C. et al. The Zwicky Transient Facility: system overview, efficiency, and first outcomes. Publ. Astron. Soc. Pac. 131, 018002 (2019).
Graham, M. J. et al. The Zwicky Transient Facility: science targets. Publ. Astron. Soc. Pac. 131, 078001 (2019).
Muñoz-Arancibia, A. et al. ALeRCE/ZTF Transient Discovery Report for 2021-09-07. Report No. 2021-3075 (Transient Name Server, 2021).
Bruch, R. J. et al. The prevalence and affect of circumstellar materials round hydrogen-rich supernova progenitors. Astrophys. J. 952, 119 (2023).
Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium – I. Type Ibn (SN 2006jc-like) occasions. Mon. Not. R. Astron. Soc. 389, 113–130 (2008).
Jacobson-Galán, W. V. et al. Final moments. II. Observational properties and bodily modeling of circumstellar-material-interacting Type II supernovae. Astrophys. J. 970, 189 (2024).
Planck Collaboration. Planck 2018 outcomes. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Liu, Y.-Q., Modjaz, M., Bianco, F. B. & Graur, O. Analyzing the most important spectroscopic knowledge set of stripped supernovae to enhance their identifications and constrain their progenitors. Astrophys. J. 827, 90 (2016).
Lunnan, R. et al. PS1-14bj: a hydrogen-poor superluminous supernova with a protracted rise and gradual decay. Astrophys. J. 831, 144 (2016).
Dessart, L., Hillier, D. J. & Kuncarayakti, H. Helium stars exploding in circumstellar materials and the origin of Type Ibn supernovae. Astron. Astrophys. 658, A130 (2022).
Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).
Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).
Gal-Yam, A., Yaron, O. & Schulze, S. Introducing a brand new supernova classification sort: SN Ien. Transient Name Server AstroNote 2024-239 (2024).
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).
Takei, Y., Tsuna, D., Kuriyama, N., Ko, T. & Shigeyama, T. CHIPS: Complete History of Interaction-powered Supernovae. Astrophys. J. 929, 177 (2022).
Takei, Y., Tsuna, D., Ko, T. & Shigeyama, T. Simulating hydrogen-poor interaction-powered supernovae with CHIPS. Astrophys. J. 961, 67 (2024).
Fowler, W. A. & Hoyle, F. Neutrino processes and pair formation in huge stars and supernovae. Astrophys. J. Suppl. Ser. 9, 201 (1964).
Barkat, Z., Rakavy, G. & Sack, N. Dynamics of supernova explosion ensuing from pair formation. Phys. Rev. Lett. 18, 379–381 (1967).
Rakavy, G., Shaviv, G. & Zinamon, Z. Carbon and oxygen burning stars and pre-supernova fashions. Astrophys. J. 150, 131 (1967).
Leung, S.-C., Nomoto, Okay. & Blinnikov, S. Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. Astrophys. J. 887, 72 (2019).
Marchant, P. et al. Pulsational pair-instability supernovae in very shut binaries. Astrophys. J. 882, 36 (2019).
Sana, H. et al. Binary interplay dominates the evolution of huge stars. Science 337, 444–446 (2012).
Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).
Groh, J. H. Early-time spectra of supernovae and their precursor winds. The luminous blue variable/yellow hypergiant progenitor of SN 2013cu. Astron. Astrophys. 572, L11 (2014).
Yaron, O. et al. Confined dense circumstellar materials surrounding an everyday Type II supernova. Nat. Phys. 13, 510–517 (2017).
Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic classification and the redshift completeness of native galaxy catalogs. Astrophys. J. 895, 32 (2020).
Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical pattern for exploring supernova demographics. Astrophys. J. 904, 35 (2020).
Li, W. et al. Nearby supernova charges from the Lick Observatory Supernova Search – II. The noticed luminosity features and fractions of supernovae in an entire pattern. Mon. Not. R. Astron. Soc. 412, 1441–1472 (2011).
Tonry, J. L. An early warning system for asteroid influence. Publ. Astron. Soc. Pac. 123, 58 (2011).
Smith, Okay. W. et al. Design and operation of the ATLAS Transient Science Server. Publ. Astron. Soc. Pac. 132, 085002 (2020).
Jones, D. O. et al. The Young Supernova Experiment: survey targets, overview, and operations. Astrophys. J. 908, 143 (2021).
Steeghs, D. et al. The Gravitational-wave Optical Transient Observer (GOTO): prototype efficiency and prospects for transient science. Mon. Not. R. Astron. Soc. 511, 2405–2422 (2022).
Ofek, E. O. et al. The Large Array Survey Telescope—system overview and performances. Publ. Astron. Soc. Pac. 135, 065001 (2023).
Groot, P. J. et al. The BlackGEM telescope array. I. Overview. Publ. Astron. Soc. Pac. 136, 115003 (2024).
LSST Science Collaborations et al. LSST Science Book, Version 2.0. Preprint at (2009).
Hogg, D. W., Baldry, I. Okay., Blanton, M. R. & Eisenstein, D. J. The Okay correction. Preprint at (2002).
Bruch, R. J. et al. A big fraction of hydrogen-rich supernova progenitors expertise elevated mass loss shortly previous to explosion. Astrophys. J. 912, 46 (2021).
Miller, A. A. et al. ZTF early observations of Type Ia supernovae. II. First gentle, the preliminary rise, and time to achieve most brightness. Astrophys. J. 902, 47 (2020).
Maguire, Okay. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 293–316 (Springer, 2017).
Arcavi, I. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 239–276 (Springer, 2017).
Gezari, S. Tidal disruption occasions. Annu. Rev. Astron. Astrophys. 59, 21–58 (2021).
Bond, H. E. et al. The 2008 luminous optical transient within the close by galaxy NGC 300. Astrophys. J. Lett. 695, L154–L158 (2009).
Ho, A. Y. Q. et al. A seek for extragalactic quick blue optical transients in ZTF and the speed of AT2018cow-like transients. Astrophys. J. 949, 120 (2023).
De, Okay. et al. The Zwicky Transient Facility census of the native universe. I. Systematic seek for calcium-rich hole transients reveals three associated spectroscopic subclasses. Astrophys. J. 905, 58 (2020).
Pastorello, A. et al. Luminous crimson novae: stellar mergers or large eruptions? Astron. Astrophys. 630, A75 (2019).
Liu, F. T., Ting, Okay. M. & Zhou, Z.-H. Isolation forest. In Proc. 2008 Eighth IEEE International Conference on Data Mining 413–422 (IEEE, 2008).
Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Nicholl, M. et al. SN 2015bn: an in depth multi-wavelength view of a close-by superluminous supernova. Astrophys. J. 826, 39 (2016).
Schulze, S. et al. 1100 days within the lifetime of the supernova 2018ibb. The finest pair-instability supernova candidate, thus far. Astron. Astrophys. 683, A223 (2024).
Kool, E. C. et al. SN 2020bqj: a Type Ibn supernova with a long-lasting peak plateau. Astron. Astrophys. 652, A136 (2021).
Ofek, E. O. et al. SN 2010jl: optical to laborious X-ray observations reveal an explosion embedded in a ten photo voltaic mass cocoon. Astrophys. J. 781, 42 (2014).
Soumagnac, M. T. et al. Early ultraviolet observations of Type IIn supernovae constrain the asphericity of their circumstellar materials. Astrophys. J. 899, 51 (2020).
Matzner, C. D. & McKee, C. F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999).
Moriya, T. J. et al. An analytic bolometric gentle curve mannequin of interaction-powered supernovae and its software to Type IIn supernovae. Mon. Not. R. Astron. Soc. 435, 1520–1535 (2013).
Owocki, S. P., Hirai, R., Podsiadlowski, P. & Schneider, F. R. N. Hydrodynamical simulations and similarity relations for eruptive mass-loss from huge stars. Mon. Not. R. Astron. Soc. 485, 988–1000 (2019).
Tsuna, D., Takei, Y., Kuriyama, N. & Shigeyama, T. An analytical density profile of dense circumstellar medium in Type II supernovae. Publ. Astron. Soc. Jpn 73, 1128–1136 (2021).
Tsuna, D. & Takei, Y. Detached and steady circumstellar matter in Type Ibc supernovae from mass eruption. Publ. Astron. Soc. Jpn 75, L19–L25 (2023).
Magee, N. H. et al. Atomic construction calculations and new LOS Alamos astrophysical opacities. In Astrophysical Applications of Powerful New Databases, ASP Conference Series, Vol. 78 (eds Adelman, S. J. & Wiese, W. L.) 51 (Astronomical Society of the Pacific, 1995).
Suzuki, A., Moriya, T. J. & Takiwaki, T. Supernova ejecta interacting with a circumstellar disk. I. Two-dimensional radiation-hydrodynamic simulations. Astrophys. J. 887, 249 (2019).
Gal-Yam, A. A easy evaluation of Type I superluminous supernova peak spectra: composition, enlargement velocities, and dynamics. Astrophys. J. 882, 102 (2019).
Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (model 5.5.6). National Institute of Standards and Technology (2018).
Irani, I. et al. The early ultraviolet gentle curves of Type II supernovae and the radii of their progenitor stars. Astrophys. J. 970, 96 (2024).
Anupama, G. C. et al. Optical photometry and spectroscopy of the Type Ibn supernova SN 2006jc till the onset of mud formation. Mon. Not. R. Astron. Soc. 392, 894–903 (2009).
Foley, R. J. et al. SN 2006jc: a Wolf-Rayet star exploding in a dense He-rich circumstellar medium. Astrophys. J. Lett. 657, L105–L108 (2007).
Gal-Yam, A. The most luminous supernovae. Annu. Rev. Astron. Astrophys. 57, 305–333 (2019).
Kuncarayakti, H. et al. Late-time H/He-poor circumstellar interplay within the Type Ic supernova SN 2021ocs: an uncovered oxygen–magnesium layer and excessive stripping of the progenitor. Astrophys. J. Lett. 941, L32 (2022).
Dessart, L., Hillier, D. J., Sukhbold, T., Woosley, S. E. & Janka, H. T. Nebular section properties of supernova Ibc from He-star explosions. Astron. Astrophys. 656, A61 (2021).
Vink, J. S. Theory and diagnostics of sizzling star mass loss. Annu. Rev. Astron. Astrophys. 60, 203–246 (2022).
Smith, N. Mass loss: its impact on the evolution and destiny of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).
Humphreys, R. M. & Davidson, Okay. The luminous blue variables: astrophysical geysers. Publ. Astron. Soc. Pac. 106, 1025 (1994).
Podsiadlowski, P., Joss, P. C. & Hsu, J. J. L. Presupernova evolution in huge interacting binaries. Astrophys. J. 391, 246 (1992).
Marchant, P. & Bodensteiner, J. The evolution of huge binary stars. Annu. Rev. Astron. Astrophys. 62, 21–61 (2024).
Heger, A. & Woosley, S. E. The nucleosynthetic signature of Population III. Astrophys. J. 567, 532–543 (2002).
Umeda, H. & Nomoto, Okay. Nucleosynthesis of zinc and iron peak parts in Population III Type II supernovae: comparability with abundances of very steel poor halo stars. Astrophys. J. 565, 385–404 (2002).
Kasen, D., Woosley, S. E. & Heger, A. Pair instability supernovae: gentle curves, spectra, and shock breakout. Astrophys. J. 734, 102 (2011).
Kozyreva, A. et al. Fast evolving pair-instability supernova fashions: evolution, explosion, gentle curves. Mon. Not. R. Astron. Soc. 464, 2854–2865 (2017).
Gilmer, M. S., Kozyreva, A., Hirschi, R., Fröhlich, C. & Yusof, N. Pair-instability supernova simulations: progenitor evolution, explosion, and light-weight curves. Astrophys. J. 846, 100 (2017).
Woosley, S. E., Blinnikov, S. & Heger, A. Pulsational pair instability as a proof for probably the most luminous supernovae. Nature 450, 390–392 (2007).
Yoshida, T., Umeda, H., Maeda, Okay. & Ishii, T. Mass ejection by pulsational pair instability in very huge stars and implications for luminous supernovae. Mon. Not. R. Astron. Soc. 457, 351–361 (2016).
Farmer, R., Renzo, M., de Mink, S. E., Fishbach, M. & Justham, S. Constraints from gravitational-wave detections of binary black gap mergers on the 12C(α, γ)16O charge. Astrophys. J. Lett. 902, L36 (2020).
Woosley, S. E. & Heger, A. The pair-instability mass hole for black holes. Astrophys. J. Lett. 912, L31 (2021).
Farag, E., Renzo, M., Farmer, R., Chidester, M. T. & Timmes, F. X. Resolving the height of the black gap mass spectrum. Astrophys. J. 937, 112 (2022).
Chen, Okay.-J., Woosley, S. E., Heger, A., Almgren, A. & Whalen, D. J. Two-dimensional simulations of pulsational pair-instability supernovae. Astrophys. J. 792, 28 (2014).
Chen, Okay.-J., Whalen, D. J., Woosley, S. E. & Zhang, W. Multidimensional radiation hydrodynamics simulations of pulsational pair-instability supernovae. Astrophys. J. 955, 39 (2023).
Chieffi, A. & Limongi, M. Pre-supernova evolution of rotating photo voltaic metallicity stars within the mass vary 13–120 M⊙ and their explosive yields. Astrophys. J. 764, 21 (2013).
Woosley, S. E. & Heger, A. The outstanding deaths of 9–11 photo voltaic mass stars. Astrophys. J. 810, 34 (2015).
Woosley, S. E. The evolution of huge helium stars, together with mass loss. Astrophys. J. 878, 49 (2019).
Woosley, S. E. & Bloom, J. S. The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006).
Hjorth, J. & Bloom, J. S. in Gamma-Ray Bursts (eds Kouveliotou, C. et al.) Ch. 9, 169–190 (Cambridge Univ. Press, 2012).
Pian, E. et al. An optical supernova related to the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006).
Starling, R. L. C. et al. Discovery of the close by lengthy, mushy GRB 100316D with an related supernova. Mon. Not. R. Astron. Soc. 411, 2792–2803 (2011).
Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2004).
Khokhlov, A. M. & Ergma, E. V. Peculiar Type I supernovae – explosive helium burning in a low-mass accreting white dwarf. Sov. Astron. Lett. 12, 152–154 (1986).
Waldman, R. et al. Helium shell detonations on low-mass white dwarfs as a potential rationalization for SN 2005E. Astrophys. J. 738, 21 (2011).
Gkini, A. et al. Eruptive mass loss lower than a 12 months earlier than the explosion of superluminous supernovae. I. The circumstances of SN 2020xga and SN 2022xgc. Astron. Astrophys. 694, A292 (2025).
This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09375-3
and if you wish to take away this text from our website please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…