This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41550-025-02641-4
and if you wish to take away this text from our web site please contact us
Henry, T. J., Kirkpatrick, J. D. & Simons, D. A. The Solar Neighborhood. I. Standard spectral varieties (K5–M8) for northern dwarfs inside eight parsecs. Astron. J. 108, 1437 (1994).
Reylé, C. et al. The 10 parsec pattern within the Gaia period. Astron. Astrophys. 650, A201 (2021).
Hayashi, C. & Nakano, T. Evolution of stars of small lots within the pre-main-sequence levels. Prog. Theor. Phys. 30, 460–474 (1963).
Tsuji, T. Near-infrared spectroscopy of M dwarfs. IV. A preliminary survey on the carbon isotopic ratio in M dwarfs. Publ. Astron. Soc. Jpn 68, 84 (2016).
Zhang, Y. et al. 13CO-rich ambiance of a younger accreting super-Jupiter. Nature 595, 370–372 (2021).
Xuan, J. W. et al. Validation of elemental and isotopic abundances in late-M spectral varieties with the benchmark HIP 55507 AB system. Astrophys. J. 962, 10 (2024).
Botelho, R. B. et al. Carbon, isotopic ratio 12C/13C, and nitrogen in photo voltaic twins: constraints for the chemical evolution of the native disc. Mon. Not. R. Astron. Soc. 499, 2196–2213 (2020).
Crossfield, I. J. M. et al. Unusual isotopic abundances in a completely convective stellar binary. Astrophys. J. 871, L3 (2019).
Prantzos, N., Aubert, O. & Audouze, J. Evolution of the carbon and oxygen isotopes within the Galaxy. Astron. Astrophys. 309, 760–774 (1996).
Romano, D. & Matteucci, F. Nova nucleosynthesis and galactic evolution of the CNO isotopes. Mon. Not. R. Astron. Soc. 342, 185–198 (2003).
Zhang, Z.-Y., Romano, D., Ivison, R. J., Papadopoulos, P. P. & Matteucci, F. Stellar populations dominated by large stars in dusty starburst galaxies throughout cosmic time. Nature 558, 260–263 (2018).
Romano, D. The evolution of CNO parts in galaxies. Astron. Astrophys. Rev. 30, 7 (2022).
Donati, J.-F. et al. SPIRou: NIR velocimetry and spectropolarimetry on the CFHT. Mon. Not. R. Astron. Soc. 498, 5684–5703 (2020).
Cristofari, P. I. et al. Measuring small-scale magnetic fields of 44 M dwarfs from SPIRou spectra with ZeeTurbo. Mon. Not. R. Astron. Soc. 526, 5648–5674 (2023).
Engle, S. G. & Guinan, E. F. Living with a crimson dwarf: the rotation–age relationships of M dwarfs. Astrophys. J. Lett. 954, L50 (2023).
Romano, D. et al. The Gaia-ESO survey: galactic evolution of lithium from iDR6. Astron. Astrophys. 653, A72 (2021).
Cristofari, P. I. et al. Estimating elementary parameters of close by M dwarfs from SPIRou spectra. Mon. Not. R. Astron. Soc. 511, 1893–1912 (2022).
Mollière, P. et al. petitRADTRANS: a Python radiative switch bundle for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).
Kitzmann, D., Stock, J. W. & Patzer, A. B. C. FASTCHEM COND: equilibrium chemistry with condensation and rainout for cool planetary and stellar environments. Mon. Not. R. Astron. Soc. 527, 7263–7283 (2023).
Kobayashi, C., Karakas, A. I. & Umeda, H. The evolution of isotope ratios within the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 414, 3231–3250 (2011).
Nomoto, Okay., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Ann. Rev. Astron. Astrophys. 51, 457–509 (2013).
Renzini, A. & Voli, M. Advanced evolutionary levels of intermediate-mass stars. I – Evolution of floor compositions. Astron. Astrophys. 94, 175 (1981).
Wiescher, M., Görres, J., Uberseder, E., Imbriani, G. & Pignatari, M. The cold and warm CNO cycles. Ann. Rev. Nucl. Part. Sci. 60, 381–404 (2010).
Karakas, A. I. & Lattanzio, J. C. The Dawes Review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ. Astron. Soc. Aust. 31, e030 (2014).
Hirschi, R. Very low-metallicity large stars: pre-SN evolution fashions and first nitrogen manufacturing. Astron. Astrophys. 461, 571–583 (2007).
Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of rotating large stars within the metallicity vary −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. 237, 13 (2018).
Romano, D., Karakas, A. I., Tosi, M. & Matteucci, F. Quantifying the uncertainties of chemical evolution research – II. Stellar yields. Astron. Astrophys. 522, A32 (2010).
Meynet, G., Ekström, S. & Maeder, A. The early star generations: the dominant impact of rotation on the CNO yields. Astron. Astrophys. 447, 623–639 (2006).
Chiappini, C. et al. A brand new imprint of quick rotators: low 12C/13C ratios in extraordinarily metal-poor halo stars. Astron. Astrophys. 479, L9–L12 (2008).
Spite, M., Spite, F. & Barbuy, B. 12C/13C ratio and CNO abundances within the classical very previous metal-poor dwarf HD 140283. Astron. Astrophys. 652, A97 (2021).
Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M. & Wyckoff, S. The 12C/13C isotope gradient derived from millimeter transitions of CN: the case for galactic chemical evolution. Astrophys. J. 634, 1126–1132 (2005).
Kubryk, M., Prantzos, N. & Athanassoula, E. Radial migration in a bar-dominated disc galaxy – I. Impact on chemical evolution. Mon. Not. R. Astron. Soc. 436, 1479–1491 (2013).
Fuhrmann, Okay., Chini, R., Kaderhandt, L. & Chen, Z. On the native stellar populations. Mon. Not. R. Astron. Soc. 464, 2610–2621 (2017).
Mann, A. W., Feiden, G. A., Gaidos, E. & Boyajian, T. How to constrain your M dwarf: measuring efficient temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).
Heger, A. & Woosley, S. E. The nucleosynthetic signature of inhabitants III. Astrophys. J. 567, 532–543 (2002).
Wilson, T. L. Isotopes within the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143 (1999).
Ayres, T. R., Lyons, J. R., Ludwig, H.-G., Caffau, E. & Wedemeyer-Böhm, S. Is the Sun lighter than the Earth? Isotopic CO within the photosphere, seen via the lens of three-dimensional spectrum synthesis. Astrophys. J. 765, 46 (2013).
Molaro, P. et al. The 12C/13C isotopic ratio on the daybreak of chemical evolution. Astron. Astrophys. 679, A72 (2023).
Ryan, S. G., Aoki, W., Norris, J. E. & Beers, T. C. The origins of two courses of carbon-enhanced, metal-poor stars. Astrophys. J. 635, 349 (2005).
Brandl, B. et al. METIS: the Mid-infrared ELT Imager and Spectrograph. The Messenger 182, 22–26 (2021).
Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).
Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).
Cristofari, P. I. et al. Estimating the atmospheric properties of 44 M dwarfs from SPIRou spectra. Mon. Not. R. Astron. Soc. 516, 3802–3820 (2022).
Cristofari, P. I. et al. Constraining atmospheric parameters and floor magnetic fields with ZeeTurbo: an software to SPIRou spectra. Mon. Not. R. Astron. Soc. 522, 1342–1357 (2023).
Cook, N. J. et al. APERO: A PipelinE to Reduce Observations—demonstration with SPIRou. Publ. Astron. Soc. Pac. 134, 114509 (2022).
Tennyson, J. et al. The 2024 launch of the ExoMol database: molecular line lists for exoplanet and different scorching atmospheres. J. Quant. Spectrosc. Radiat. Transf. 326, 109083 (2024).
Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).
Kurucz, R. L. in Stellar Atmospheres: Beyond Classical Models NATO ASI Series (eds Crivellari, L. et al.) 441–448 (Springer, 1991).
Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (model 5.12) (National Institute of Standards and Technology, 2024); https://doi.org/10.18434/T4W30F
Zhang, Y. et al. Elemental abundances of the super-Neptune WASP-107b from Hubble and Spitzer photometry. Astron. J. 165, 62 (2023).
González Picos, D. et al. The ESO SupJup Survey – II. The 12C/13C isotope ratios of three younger brown dwarfs with CRIRES+. Astron. Astrophys. 689, A212 (2024).
Czesla, S. et al. PyA: Python astronomy-related packages (Astrophysics Source Code Library, 2019).
Husser, T.-O. et al. A brand new intensive library of PHOENIX stellar atmospheres and artificial spectra. Astron. Astrophys. 553, A6 (2013).
Grant, D. & Wakeford, H. ExoTiC-LD: thirty seconds to stellar limb-darkening coefficients. J. Open Source Softw. 9, 6816 (2024).
Hauschildt, P. H., Allard, F. & Baron, E. The NextGen mannequin ambiance grid for 3000 ≤ Teff ≤ 10,000 Okay. Astrophys. J. 512, 377 (1999).
Hahlin, A. et al. Multi-scale magnetic subject investigation of the M-dwarf eclipsing binary CU Cancri. Astron. Astrophys. 684, A175 (2024).
Ruffio, J.-B. et al. Detecting exomoons from radial velocity measurements of self-luminous planets: software to observations of HR 7672 B and future prospects. Astron. J. 165, 113 (2023).
Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest Algorithm. Open J. Astrophys. 2, 10 (2019).
Buchner, J. PyMultiNest: Python interface for MultiNest (Astrophysics Source Code Library, 2016).
Lawson, C. L. & Hanson, R. J. Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995).
Kass, R. E. & Raftery, A. E. Bayes elements. J. Am. Stat. Assoc. 90, 773–795 (1995).
Benneke, B. & Seager, S. How to differentiate between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).
de Regt, S. et al. The ESO SupJup Survey – I. Chemical and isotopic characterisation of the late L-dwarf DENIS J0255-4700 with CRIRES+. Astron. Astrophys. 688, A116 (2024).
Polyansky, O. L. et al. ExoMol molecular line lists XIX: high-accuracy computed scorching line lists for ({{rm{H}}}_{2}^{18}rm{O}) and ({{rm{H}}}_{2}^{18}rm{O}). Mon. Not. R. Astron. Soc. 466, 1363–1371 (2017).
González Picos, D., Snellen, I. & de Regt, S. Chemical evolution imprints in uncommon isotopes of close by M dwarfs. Zenodo (2025).
Gaia Collaboration et al. Gaia Early Data Release 3: abstract of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).
Lyons, J. R., Gharib-Nezhad, E. & Ayres, T. R. A lightweight carbon isotope composition for the Sun. Nat. Commun. 9, 908 (2018).
Wang, X.-L., Fang, M., Liu, Y., Zhang, M.-M. & Cui, W.-Y. LAMOST reveals long-lived protoplanetary disks. Astron. J. 169, 141 (2025).
Ribas, I. et al. A candidate super-Earth planet orbiting close to the snow line of Barnard’s star. Nature 563, 365–368 (2018).
Bouvier, A. & Wadhwa, M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010).
Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 imaginative and prescient. Astron. Astrophys. 653, A141 (2021).
This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41550-025-02641-4
and if you wish to take away this text from our web site please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…