Categories: Technology

Current and future methane emissions from boreal-Arctic wetlands and lakes

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41558-025-02413-y
and if you wish to take away this text from our web site please contact us


  • Zhang, Z. et al. Development of the worldwide dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth Syst. Sci. Data 13, 2001–2023 (2021).


    Google Scholar
     

  • Feng, M., Sexton, J. O., Channan, S. & Townshend, J. R. A world, high-resolution (30-m) inland water physique dataset for 2000: first outcomes of a topographic–spectral classification algorithm. Int. J. Digital Earth 9, 113–133 (2016).


    Google Scholar
     

  • Saunois, M. et al. The international methane finances 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).


    Google Scholar
     

  • Svensson, B. H., Veum, A. Okay. & Kjelvik, S. in Fennoscandian Tundra Ecosystems: Part 1 Plants and Microorganisms (ed. Wielgolaski, F. E.) 279–286 (Springer, 1975).

  • Kuhn, M. et al. BAWLD-CH 4: a complete dataset of methane fluxes from boreal and Arctic ecosystems. Earth Syst. Sci. Data 13, 5151–5189 (2021).


    Google Scholar
     

  • Thornton, B. F., Wik, M. & Crill, P. M. Double‐counting challenges the accuracy of excessive‐latitude methane inventories. Geophys. Res. Lett. 43, 12,569–12,577 (2016).

    CAS 

    Google Scholar
     

  • McNicol, G. et al. Upscaling wetland methane emissions from the FLUXNET‐CH4 eddy covariance community (UpCH4 v1.0): mannequin growth, community evaluation, and finances comparability. AGU Adv. 4, e2023AV000956 (2023).


    Google Scholar
     

  • Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, Okay. C. Surface water inundation within the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).


    Google Scholar
     

  • Johnson, M. S., Matthews, E., Du, J., Genovese, V. & Bastviken, D. Methane emission from international lakes: new spatiotemporal information and observation-driven modeling of methane dynamics signifies decrease emissions. J. Geophys. Res. Biogeosci. 127, e2022JG006793 (2022).

    CAS 

    Google Scholar
     

  • Walter Anthony, Okay. M. et al. Estimating methane emissions from northern lakes utilizing ice-bubble surveys. Limnol. Oceanogr. Methods 8, 592–609 (2010).


    Google Scholar
     

  • Oh, Y. et al. CarbonTracker CH4 2023 (NOAA Global Monitoring Laboratory, 2023); https://doi.org/10.25925/40JT-QD67

  • Thompson, R. L. et al. Methane fluxes within the excessive northern latitudes for 2005–2013 estimated utilizing a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572 (2017).

    CAS 

    Google Scholar
     

  • Webb, E. E. et al. Permafrost thaw drives floor water decline throughout lake-rich areas of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

    CAS 

    Google Scholar
     

  • Turetsky, M. R. et al. Carbon launch by abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    CAS 

    Google Scholar
     

  • Olefeldt, D. et al. The Boreal-Arctic Wetland and Lake Dataset (BAWLD). Earth Syst. Sci. Data 13, 5127–5149 (2021).


    Google Scholar
     

  • Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions: a significant factor of annual emissions throughout northern ecosystems. Glob. Chang. Biol. 24, 3331–3343 (2018).


    Google Scholar
     

  • Sieczko, A. Okay. et al. Diel variability of methane emissions from lakes. Proc. Natl Acad. Sci. USA 117, 21488–21494 (2020).

    CAS 

    Google Scholar
     

  • Wik, M., Varner, R. Okay., Anthony, Okay. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are important elements of methane launch. Nat. Geosci. 9, 99–105 (2016).

    CAS 

    Google Scholar
     

  • Vonk, J. E. et al. High biolability of historic permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).

    CAS 

    Google Scholar
     

  • Walter Anthony, Okay. et al. Twenty first-Century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).


    Google Scholar
     

  • Bartsch, A. et al. Circumarctic land cowl variety contemplating wetness gradients. Hydrol. Earth Syst. Sci. 28, 2421–2481 (2024).

    CAS 

    Google Scholar
     

  • Kyzivat, E. D. & Smith, L. C. Contemporary and historic detection of small lakes utilizing tremendous decision Landsat imagery: promise and peril. GISci. Remote Sens. (2023).

  • Rocher-Ros, G. et al. Global methane emissions from rivers and streams. Nature 621, 530–535 (2023).

    CAS 

    Google Scholar
     

  • Voigt, C. et al. Arctic soil methane sink will increase with drier situations and better ecosystem respiration. Nat. Clim. Change 13, 1095–1104 (2023).

    CAS 

    Google Scholar
     

  • Lee, J. et al. Soil natural carbon is a key determinant of CH4 sink in international forest soils. Nat. Commun. 14, 3110 (2023).

    CAS 

    Google Scholar
     

  • Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from excessive latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).

    CAS 

    Google Scholar
     

  • Chasmer, L. & Hopkinson, C. Threshold lack of discontinuous permafrost and panorama evolution. Glob. Chang. Biol. 23, 2672–2686 (2017).


    Google Scholar
     

  • Mamet, S. D., Chun, Okay. P., Kershaw, G. G. L., Loranty, M. M. & Peter Kershaw, G. Recent will increase in permafrost thaw charges and areal lack of palsas within the western Northwest Territories, Canada: non-linear palsa degradation. Permafr. Periglac. Process. 28, 619–633 (2017).


    Google Scholar
     

  • Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway over the past 60 years. Cryosphere 11, 1–16 (2017).


    Google Scholar
     

  • Bao, T., Jia, G. & Xu, X. Weakening greenhouse gasoline sink of pristine wetlands underneath warming. Nat. Clim. Change 13, 462–469 (2023).

    CAS 

    Google Scholar
     

  • Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Callaghan, T. V. & Van Logtestijn, R. S. P. Summer warming and elevated winter snow cowl have an effect on Sphagnum fuscum development, construction and manufacturing in a sub‐Arctic lavatory. Glob. Chang. Biol. 10, 93–104 (2004).


    Google Scholar
     

  • Norby, R. J., Childs, J., Hanson, P. J. & Warren, J. M. Rapid lack of an ecosystem engineer: Sphagnum decline in an experimentally warmed lavatory. Ecol. Evol. 9, 12571–12585 (2019).


    Google Scholar
     

  • Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to local weather warming. Nat. Clim. Change 4, 51–55 (2014).

    CAS 

    Google Scholar
     

  • de Vrese, P. et al. Sensitivity of Arctic CH4 emissions to panorama wetness diminished by atmospheric feedbacks. Nat. Clim. Change 13, 832–839 (2023).


    Google Scholar
     

  • Zhang, Z. et al. Emerging position of wetland methane emissions in driving Twenty first century local weather change. Proc. Natl. Acad. Sci. USA 114, 9647–9652 (2017).

    CAS 

    Google Scholar
     

  • Yuan, Okay. et al. Arctic–boreal wetland methane emissions modulated by warming and vegetation exercise. Nat. Clim. Change 14, 282–288 (2024).

  • Bartsch, A. et al. Circumarctic land-cover variety contemplating wetness gradients. EGUsphere 2023, 2421–2481 (2023).


    Google Scholar
     

  • Oh, Y. et al. Reduced internet methane emissions resulting from microbial methane oxidation in a hotter Arctic. Nat. Clim. Chang. 10, 317–321 (2020).

    CAS 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial decision local weather surfaces for international land areas. Int. J. Climatol. 37, 4302–4315 (2017).


    Google Scholar
     

  • Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and bodily controls on northern terrestrial methane emissions throughout permafrost zones. Glob. Change Biol. 19, 589–603 (2013).


    Google Scholar
     

  • Turetsky, M. R. et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob. Change Biol. 20, 2183–2197 (2014).


    Google Scholar
     

  • Weyhenmeyer, G. A. et al. Large geographical variations within the sensitivity of ice-covered lakes and rivers within the Northern Hemisphere to temperature adjustments. Glob. Change Biol. 17, 268–275 (2011).


    Google Scholar
     

  • DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A. & Prairie, Y. T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interplay between temperature and system productiveness. Limnol. Oceanogr. 61, S62–S77 (2016).


    Google Scholar
     

  • Stanley, E. H. et al. GRiMeDB: the worldwide river database of methane concentrations and fluxes. Earth Syst. Sci. Data Discuss. 15, 2879–2926 (2022).

  • Dieleman, C. M. et al. Wildfire combustion and carbon shares within the southern Canadian boreal forest: Implications for a warming world. Glob. Chang. Biol. 26, 6062–6079 (2020).


    Google Scholar
     

  • Peltola, O. et al. Monthly gridded information product of northern wetland methane emissions primarily based on upscaling eddy covariance observations. Earth Syst. Sci. Data 1263–1289 (2019).

  • Liu, L. et al. Uncertainty quantification of world internet methane emissions from terrestrial ecosystems utilizing a mechanistically primarily based biogeochemistry mannequin. J. Geophys. Res. Biogeosci. 125, e2019JG005428 (2020).

    CAS 

    Google Scholar
     

  • Matthews, E. & Fung, I. Methane emission from pure wetlands: international distribution, space, and environmental traits of sources. Global Biogeochem. Cycles 1, 61–86 (1987).

    CAS 

    Google Scholar
     

  • Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    CAS 

    Google Scholar
     

  • Quinton, W. L., Hayashi, M. & Chasmer, L. E. Permafrost-thaw-induced land-cover change within the Canadian subarctic: implications for water sources. Hydrol. Process. 25, 152–158 (2011).


    Google Scholar
     

  • Karlsson, J. M., Lyon, S. W. & Destouni, G. Temporal conduct of lake size-distribution in a thawing permafrost panorama in northwestern Siberia. Remote Sensing 6, 621–636 (2014).


    Google Scholar
     

  • Nitze, I. et al. Landsat-based pattern evaluation of lake dynamics throughout northern permafrost areas. Remote Sens. 9, 640 (2017).


    Google Scholar
     

  • Olthof, I., Fraser, R. H., van der Sluijs, J. & Travers-Smith, H. Detecting long-term Arctic floor water adjustments. Nat. Clim. Change 13, 1191–1193 (2023).


    Google Scholar
     

  • Leppiniemi, O., Karjalainen, O., Aalto, J., Luoto, M. & Hjort, J. Environmental areas for palsas and peat plateaus are disappearing at a circumpolar scale. Cryosphere 17, 3157–3176 (2023).


    Google Scholar
     

  • Liljedahl, A. Okay. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its affect on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    CAS 

    Google Scholar
     

  • Zoltai, S. C. Permafrost distribution in peatlands of west-central Canada in the course of the Holocene heat interval 6000 years BP. Geogr. Phys. Quat. 49, 45–54 (1995).


    Google Scholar
     

  • Kuhn, M. et al. Gridded product of methane emissions from Boreal-Arctic wetlands and lakes. Zenodo (2025).

  • Kuhn, M. et al. BAWLD-CH4: Methane Fluxes from Boreal and Arctic Ecosystems (Arctic Data Centre, 2025); https://doi.org/10.18739/A27H1DN5S

  • Olefeldt, D. et al. The Fractional Land Cover Estimates from the Boreal–Arctic Wetland and Lake Dataset (BAWLD), 2021 (Arctic Data Center, 2021); https://doi.org/10.18739/A2C824F9X

  • Global Wetland Methane Emissions derived from FLUXNET and the UpCH4 Model, 20012018 (DOE ORNL DAAC, 2024); https://doi.org/10.3334/ORNLDAAC/2253

  • Zhang, Z. et al. Development of a worldwide dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Zenodo (2021).

  • Peltola, O. et al. Dataset for “Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations”. Zenodo (2019).

  • Runfola, D. et al. geoBoundaries: a worldwide database of political administrative boundaries. PLoS One 15, e0231866 (2020).

    CAS 

    Google Scholar
     

  • Kuhn, M. et al. Code for the article ‘Current and future methane emissions from boreal-Arctic wetlands and lakes’. Zenodo (2025).

  • kenziekuhn4/bawldCH4_scaling (GitHub, 2025);


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41558-025-02413-y
    and if you wish to take away this text from our web site please contact us

    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago