This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41558-025-02413-y
and if you wish to take away this text from our web site please contact us
Zhang, Z. et al. Development of the worldwide dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth Syst. Sci. Data 13, 2001–2023 (2021).
Feng, M., Sexton, J. O., Channan, S. & Townshend, J. R. A world, high-resolution (30-m) inland water physique dataset for 2000: first outcomes of a topographic–spectral classification algorithm. Int. J. Digital Earth 9, 113–133 (2016).
Saunois, M. et al. The international methane finances 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
Svensson, B. H., Veum, A. Okay. & Kjelvik, S. in Fennoscandian Tundra Ecosystems: Part 1 Plants and Microorganisms (ed. Wielgolaski, F. E.) 279–286 (Springer, 1975).
Kuhn, M. et al. BAWLD-CH 4: a complete dataset of methane fluxes from boreal and Arctic ecosystems. Earth Syst. Sci. Data 13, 5151–5189 (2021).
Thornton, B. F., Wik, M. & Crill, P. M. Double‐counting challenges the accuracy of excessive‐latitude methane inventories. Geophys. Res. Lett. 43, 12,569–12,577 (2016).
McNicol, G. et al. Upscaling wetland methane emissions from the FLUXNET‐CH4 eddy covariance community (UpCH4 v1.0): mannequin growth, community evaluation, and finances comparability. AGU Adv. 4, e2023AV000956 (2023).
Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, Okay. C. Surface water inundation within the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).
Johnson, M. S., Matthews, E., Du, J., Genovese, V. & Bastviken, D. Methane emission from international lakes: new spatiotemporal information and observation-driven modeling of methane dynamics signifies decrease emissions. J. Geophys. Res. Biogeosci. 127, e2022JG006793 (2022).
Walter Anthony, Okay. M. et al. Estimating methane emissions from northern lakes utilizing ice-bubble surveys. Limnol. Oceanogr. Methods 8, 592–609 (2010).
Oh, Y. et al. CarbonTracker CH4 2023 (NOAA Global Monitoring Laboratory, 2023); https://doi.org/10.25925/40JT-QD67
Thompson, R. L. et al. Methane fluxes within the excessive northern latitudes for 2005–2013 estimated utilizing a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572 (2017).
Webb, E. E. et al. Permafrost thaw drives floor water decline throughout lake-rich areas of the Arctic. Nat. Clim. Change 12, 841–846 (2022).
Turetsky, M. R. et al. Carbon launch by abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Olefeldt, D. et al. The Boreal-Arctic Wetland and Lake Dataset (BAWLD). Earth Syst. Sci. Data 13, 5127–5149 (2021).
Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions: a significant factor of annual emissions throughout northern ecosystems. Glob. Chang. Biol. 24, 3331–3343 (2018).
Sieczko, A. Okay. et al. Diel variability of methane emissions from lakes. Proc. Natl Acad. Sci. USA 117, 21488–21494 (2020).
Wik, M., Varner, R. Okay., Anthony, Okay. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are important elements of methane launch. Nat. Geosci. 9, 99–105 (2016).
Vonk, J. E. et al. High biolability of historic permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).
Walter Anthony, Okay. et al. Twenty first-Century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).
Bartsch, A. et al. Circumarctic land cowl variety contemplating wetness gradients. Hydrol. Earth Syst. Sci. 28, 2421–2481 (2024).
Kyzivat, E. D. & Smith, L. C. Contemporary and historic detection of small lakes utilizing tremendous decision Landsat imagery: promise and peril. GISci. Remote Sens. (2023).
Rocher-Ros, G. et al. Global methane emissions from rivers and streams. Nature 621, 530–535 (2023).
Voigt, C. et al. Arctic soil methane sink will increase with drier situations and better ecosystem respiration. Nat. Clim. Change 13, 1095–1104 (2023).
Lee, J. et al. Soil natural carbon is a key determinant of CH4 sink in international forest soils. Nat. Commun. 14, 3110 (2023).
Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from excessive latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).
Chasmer, L. & Hopkinson, C. Threshold lack of discontinuous permafrost and panorama evolution. Glob. Chang. Biol. 23, 2672–2686 (2017).
Mamet, S. D., Chun, Okay. P., Kershaw, G. G. L., Loranty, M. M. & Peter Kershaw, G. Recent will increase in permafrost thaw charges and areal lack of palsas within the western Northwest Territories, Canada: non-linear palsa degradation. Permafr. Periglac. Process. 28, 619–633 (2017).
Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway over the past 60 years. Cryosphere 11, 1–16 (2017).
Bao, T., Jia, G. & Xu, X. Weakening greenhouse gasoline sink of pristine wetlands underneath warming. Nat. Clim. Change 13, 462–469 (2023).
Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Callaghan, T. V. & Van Logtestijn, R. S. P. Summer warming and elevated winter snow cowl have an effect on Sphagnum fuscum development, construction and manufacturing in a sub‐Arctic lavatory. Glob. Chang. Biol. 10, 93–104 (2004).
Norby, R. J., Childs, J., Hanson, P. J. & Warren, J. M. Rapid lack of an ecosystem engineer: Sphagnum decline in an experimentally warmed lavatory. Ecol. Evol. 9, 12571–12585 (2019).
Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to local weather warming. Nat. Clim. Change 4, 51–55 (2014).
de Vrese, P. et al. Sensitivity of Arctic CH4 emissions to panorama wetness diminished by atmospheric feedbacks. Nat. Clim. Change 13, 832–839 (2023).
Zhang, Z. et al. Emerging position of wetland methane emissions in driving Twenty first century local weather change. Proc. Natl. Acad. Sci. USA 114, 9647–9652 (2017).
Yuan, Okay. et al. Arctic–boreal wetland methane emissions modulated by warming and vegetation exercise. Nat. Clim. Change 14, 282–288 (2024).
Bartsch, A. et al. Circumarctic land-cover variety contemplating wetness gradients. EGUsphere 2023, 2421–2481 (2023).
Oh, Y. et al. Reduced internet methane emissions resulting from microbial methane oxidation in a hotter Arctic. Nat. Clim. Chang. 10, 317–321 (2020).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial decision local weather surfaces for international land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and bodily controls on northern terrestrial methane emissions throughout permafrost zones. Glob. Change Biol. 19, 589–603 (2013).
Turetsky, M. R. et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob. Change Biol. 20, 2183–2197 (2014).
Weyhenmeyer, G. A. et al. Large geographical variations within the sensitivity of ice-covered lakes and rivers within the Northern Hemisphere to temperature adjustments. Glob. Change Biol. 17, 268–275 (2011).
DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A. & Prairie, Y. T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interplay between temperature and system productiveness. Limnol. Oceanogr. 61, S62–S77 (2016).
Stanley, E. H. et al. GRiMeDB: the worldwide river database of methane concentrations and fluxes. Earth Syst. Sci. Data Discuss. 15, 2879–2926 (2022).
Dieleman, C. M. et al. Wildfire combustion and carbon shares within the southern Canadian boreal forest: Implications for a warming world. Glob. Chang. Biol. 26, 6062–6079 (2020).
Peltola, O. et al. Monthly gridded information product of northern wetland methane emissions primarily based on upscaling eddy covariance observations. Earth Syst. Sci. Data 1263–1289 (2019).
Liu, L. et al. Uncertainty quantification of world internet methane emissions from terrestrial ecosystems utilizing a mechanistically primarily based biogeochemistry mannequin. J. Geophys. Res. Biogeosci. 125, e2019JG005428 (2020).
Matthews, E. & Fung, I. Methane emission from pure wetlands: international distribution, space, and environmental traits of sources. Global Biogeochem. Cycles 1, 61–86 (1987).
Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
Quinton, W. L., Hayashi, M. & Chasmer, L. E. Permafrost-thaw-induced land-cover change within the Canadian subarctic: implications for water sources. Hydrol. Process. 25, 152–158 (2011).
Karlsson, J. M., Lyon, S. W. & Destouni, G. Temporal conduct of lake size-distribution in a thawing permafrost panorama in northwestern Siberia. Remote Sensing 6, 621–636 (2014).
Nitze, I. et al. Landsat-based pattern evaluation of lake dynamics throughout northern permafrost areas. Remote Sens. 9, 640 (2017).
Olthof, I., Fraser, R. H., van der Sluijs, J. & Travers-Smith, H. Detecting long-term Arctic floor water adjustments. Nat. Clim. Change 13, 1191–1193 (2023).
Leppiniemi, O., Karjalainen, O., Aalto, J., Luoto, M. & Hjort, J. Environmental areas for palsas and peat plateaus are disappearing at a circumpolar scale. Cryosphere 17, 3157–3176 (2023).
Liljedahl, A. Okay. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its affect on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
Zoltai, S. C. Permafrost distribution in peatlands of west-central Canada in the course of the Holocene heat interval 6000 years BP. Geogr. Phys. Quat. 49, 45–54 (1995).
Kuhn, M. et al. Gridded product of methane emissions from Boreal-Arctic wetlands and lakes. Zenodo (2025).
Kuhn, M. et al. BAWLD-CH4: Methane Fluxes from Boreal and Arctic Ecosystems (Arctic Data Centre, 2025); https://doi.org/10.18739/A27H1DN5S
Olefeldt, D. et al. The Fractional Land Cover Estimates from the Boreal–Arctic Wetland and Lake Dataset (BAWLD), 2021 (Arctic Data Center, 2021); https://doi.org/10.18739/A2C824F9X
Global Wetland Methane Emissions derived from FLUXNET and the UpCH4 Model, 2001–2018 (DOE ORNL DAAC, 2024); https://doi.org/10.3334/ORNLDAAC/2253
Zhang, Z. et al. Development of a worldwide dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Zenodo (2021).
Peltola, O. et al. Dataset for “Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations”. Zenodo (2019).
Runfola, D. et al. geoBoundaries: a worldwide database of political administrative boundaries. PLoS One 15, e0231866 (2020).
Kuhn, M. et al. Code for the article ‘Current and future methane emissions from boreal-Arctic wetlands and lakes’. Zenodo (2025).
kenziekuhn4/bawldCH4_scaling (GitHub, 2025);
This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41558-025-02413-y
and if you wish to take away this text from our web site please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…