Categories: World

Ancient DNA connects large-scale migration with the unfold of Slavs

This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09437-6
and if you wish to take away this text from our web site please contact us


  • Curta, F. The Making of the Slavs: History and Archaeology of the Lower Danube Region, C. 500700, Vol. 52 (Cambridge Univ. Press, 2001).

  • Pohl, W. The Avars: A Steppe Empire in Central Europe, 567–822 (Cornell Univ. Press, 2018).

  • Dulinicz, M. & Moździoch, S. The Early Slavic Settlement in Central Europe within the Light of New Dating Evidence, Vol. 3 (Institute of Archaeology and Ethnology of the Polish Academy of Sciences, 2013).

  • Parczewski, M. Die Anfänge Der Frühslawischen Kultur in Polen, Vol. 17 (Österreichische Gesellschaft für Ur- und Frühgeschichte, Wien, 1993).

  • Kazanski, M. in Encyclopedia of Slavic Languages and Linguistics Online (ed. Greenberg, M. L.) (Brill, London, 2020).

  • Szmoniewski, B. Ethnogenesis of Slavs seen from Polish perspective. Soka Univ. Bull. Russ. Slav. Stud. 12, 23–43 (2020).


    Google Scholar
     

  • Pohl, W. Die Germanen (De Gruyter, 2000).

  • Halsall, G. Barbarian Migrations and the Roman West, 376–568 (Cambridge Univ. Press, 2007).

  • Meier, M. Geschichte Der Völkerwanderung: Europa, Asien Und Afrika, Vol. 3 (C. H. Beck, 2019).

  • Pohl, W. Die Völkerwanderung. Eroberung Und Integration (Kohlhammer, 2002).

  • Wolfram, H. History of the Goths (Univ. California Press, 1990).

  • Wolfram, H. Gotische Studien. Volk Und Herrschaft Im Frühen Mittelalter. (C. H. Beck, 2005).

  • Castritius, H., Geuenich, D. & Werner, M. Die Frühzeit Der Thüringer: Archäologie, Sprache, Geschichte, Vol. 63 (De Gruyter, 2009).

  • Muhl, A. & Schwarz, R. Kulturenstreit. Frühmittelalter Zwischen Harz Und Elbe, Vol. 9 (Landesamt f. Denkmalpflege u. Archäologie Sachsen-Anhalt, 2023).

  • Muhl, A. & Schwarz, R. Königsdämmerung—Das Frühmittelalterliche Thüringerreich, Vol. 8 (Landesamt f. Denkmalpflege u. Archäologie Sachsen-Anhalt, 2022).

  • Bemmann, J. in Die Frühzeit der Thüringer (eds Castritius, H., Geuenich, D. & Werner, M.) 63–82 (De Gruyter, 2009).

  • Brachmann, H. Slawische Stämme an Elbe Und Saale. Zu Ihrer Geschichte Und Kultur Im 6. Bis 10. Jahrhundert—Auf Grund Archäologischer Quellen, Vol. 32 (Akademie-Verlag, 1978).

  • Parczewski, M. Origins of early Slav tradition in Poland. Antiquity 65, 676–683 (1991).


    Google Scholar
     

  • Urbańczyk, P. (ed.) Nie-Słowianie o Początkach Słowian. Mała Biblioteka Poznańskiego Towarzystwa Przyjaciół Nauk, 18 (Poznańskie Towarzystwo Przyjaciół Nauk, Poznań, 2006).

  • Godłowski, Ok. Frühe Slawen in Mitteleuropa. Schriften von Kazimierz Godłowski, Vol. 6 (Wachholtz, Neumünster, 2005).

  • Kaczanowski, P. & Parczewski, M. (eds) Archeologia O Początkach Słowian. Materiały Z Konferencji, Kraków, 19-21 Listopada 2001 (Kraków, Instytut Archeologii Uniw. Jagiellońskiego, 2005).

  • Curta, F. in Migration Histories of the Medieval Afroeurasian Transition Zone 101–138 (Brill, 2020).

  • Curta, F. Slavs within the Making History, Linguistics, and Archaeology in Eastern Europe (ca. 500–ca. 700) (Routledge, 2021).

  • Kara, M. Archaeology, primarily Polish, within the present dialogue on the ethnogenesis of the Slavs. Slavia Antiqua 63, 66–128 (2022).


    Google Scholar
     

  • Curta, F. Migration and customary Slavic. Critical remarks of an archaeologist. Linguistica Brunensia 74, 41–56 (2024).


    Google Scholar
     

  • Kushniarevich, A. et al. Genetic heritage of the Balto-Slavic talking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal information. PLoS ONE 10, e0135820 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olalde, I. et al. A genetic historical past of the Balkans from Roman frontier to Slavic migrations. Cell 186, 5472–5485.e9 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peltola, S. et al. Genetic admixture and language shift within the medieval Volga-Oka interfluve. Curr. Biol. 33, 174–182.e10 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Stolarek, I. et al. Genetic historical past of East-Central Europe within the first millennium ce. Genome Biol. 24, 173 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barford, P. M. The Early Slavs: Culture and Society in Early Medieval Eastern Europe (Cornell Univ. Press, 2001).

  • Lübke, C. in Neue Wege der Frühmittelalterforschung. Bilanz und Perspektive (eds Pohl, W., Diesenberger, M. & Zeller, B.) 323–338 (Verlag der Österreichischen Akademie der Wissenschaften, 2018).

  • Brather, S. Archäologie Der Westlichen Slawen. Siedlung, Wirtschaft Und Gesellschaft Im Früh- Und Hochmittelalterlichen Ostmitteleuropa, Vol. 61 (De Gruyter, 2008).

  • Gross, A. et al. Population-genetic comparability of the Sorbian isolate inhabitants in Germany with the German KORA inhabitants utilizing genome-wide SNP arrays. BMC Genet. 12, 67 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonio, M. L. et al. Stable inhabitants construction in Europe because the Iron Age, regardless of excessive mobility. eLife 13, e79714 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haak, W. et al. Massive migration from the steppe was a supply for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazaridis, I. et al. Genomic insights into the origin of farming within the historic Near East. Nature 536, 419–424 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid, C. & Schiffels, S. Estimating human mobility in Holocene Western Eurasia with large-scale historic genomic information. Proc. Natl Acad. Sci. USA 120, e2218375120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amorim, C. E. G. et al. Understanding Sixth-century barbarian social group and migration by way of paleogenomics. Nat. Commun. 9, 3547 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vyas, D. N. et al. Fine-scale sampling uncovers the complexity of migrations in fifth–Sixth century Pannonia. Curr. Biol. 33, 3951–3961.e11 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, Ok. Fast model-based estimation of ancestry in unrelated people. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Ok. et al. Ancient DNA reveals reproductive barrier regardless of shared Avar-period tradition. Nature 638, 1007–1014 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human historic DNA. Nat. Genet. 56, 143–151 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ralph, P. & Coop, G. The geography of latest genetic ancestry throughout Europe. PLoS Biol. 11, e1001555 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Asadi, H., Petkova, D., Stephens, M. & Novembre, J. Estimating latest migration and population-size surfaces. PLoS Genet. 15, e1007908 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolarek, I. et al. Goth migration induced modifications within the matrilineal genetic construction of the central-east European inhabitants. Sci. Rep. 9, 6737 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kokowski, A. Gothic migrations: searching for the reality. Praehist. Z. 97, 313–323 (2022).


    Google Scholar
     

  • Veeramah, Ok. R. et al. Genetic variation within the Sorbs of japanese Germany within the context of broader European genetic range. Eur. J. Hum. Genet. 19, 995–1001 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higounet, C. Die Deutsche Ostsiedlung Im Mittelalter (Siedler, 1986).

  • Bünz, E. Ostsiedlung Und Landesausbau in Sachsen. Die Kührener Urkunde von 1154 Und Ihr Historisches Umfeld, Vol. 23 (Leipziger Univ., 2008).

  • Lübke, C. in The Making of Medieval History (eds Loud, G. A. & Staub, M.) 167–183 (York Medieval Press, 2017).

  • Mittnik, A. et al. The genetic prehistory of the Baltic Sea area. Nat. Commun. 9, 442 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saag, L. et al. The arrival of Siberian ancestry connecting the Eastern Baltic to Uralic audio system additional east. Curr. Biol. 29, 1701–1711.e16 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Gennaro, L. et al. PANE: quick and dependable ancestral reconstruction on historic genotype information with non-negative least sq. and principal element evaluation. Genome Biol. 26, 29 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Speidel, L. et al. High-resolution genomic historical past of early medieval Europe. Nature 637, 118–126 (2025).

  • Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of main human admixture occasions in the course of the European Holocene. eLife 11, e77625 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pronk, T. in The Indo-European Language Family. A Phylogenetic Perspective (ed. Olander, T.) 269–292 (Cambridge Univ. Press, 2022).

  • Villanueva Svensson, M. The Rise of Acuteness in Balto-Slavic (Brill, 2023).

  • Derksen, R. in Encyclopedia of Slavic Languages and Linguistics Online (ed. Greenberg, M. L.) (Brill, London, 2020).

  • Matasović, R. Toward a relative chronology of the earliest Baltic and Slavic sound modifications. Baltistica 40, 147–157 (2005).


    Google Scholar
     

  • Young, S. in The Indo-European Languages (ed. Kapović, M.) 479–485 (Routledge, 2017).

  • Jasanoff, J. H. The Prehistory of the Balto-Slavic Accent (Brill, 2017).

  • Petit, D. Balto-Slavic. in Handbook of Comparative and Historical Indo-European Linguistics (eds Klein, J., Joseph, B. & Fritz, M.) 1960–1973 (De Gruyter Mouton, 2018).

  • Olander, T. Proto-Slavic Inflectional Morphology (Brill, 2015).

  • Hellenthal, G. et al. A genetic atlas of human admixture historical past. Science 343, 747–751 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbieri, C. et al. A worldwide evaluation of matches and mismatches between human genetic and linguistic histories. Proc. Natl Acad. Sci. USA 119, e2122084119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gnecchi-Ruscone, G. A. et al. Network of huge pedigrees reveals social practices of Avar communities. Nature 629, 376–383 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gretzinger, J. et al. The Anglo-Saxon migration and the formation of the early English gene pool. Nature 610, 112–119 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macháček, J. et al. Runes from Lány (Czech Republic)—The oldest inscription amongst Slavs. A brand new normal for multidisciplinary evaluation of runic bones. J. Archaeol. Sci. 127, 105333 (2021).


    Google Scholar
     

  • Bichlmeier, H. in New Perspectives on the Early Slavs and the Rise of Slavic: Contact and Migration (eds Klír, T., Boček, V. & Jansens, N.) 43–76 (Univ. Winter, 2000).

  • Donat, P. & Fischer, R. E. Die Anfänge slawischer Siedlung westlich der Oder. Methodische Überlegungen zu Problemen aktueller archäologischer und onomastischer Forschungen. Jahrb. Brandenbg. Landesgesch. 45, 7–30 (1994).


    Google Scholar
     

  • Leube, A. Germanische Völkerwanderungen und ihr archäologischer Fundniederschlag II. Slawisch-germanische Kontakte im nördlichen Elb-Oder-Gebiet. Ethogr. Archäol. Z. 36, 259–298 (1996).


    Google Scholar
     

  • Bursche, A., Hines, J. & Zapolska, A. (eds) The Migration Period between the Oder and the Vistula. East Central and Eastern Europe within the Middle Ages (Brill, 2020).

  • Biermann, F. in Die Frühen Slawen—Von der Expansion zu Gentes und Nationes, Vol. 81 (eds Biermann, F., Kersting, T. & Klammt, A.) 9–26 (Beier und Beran, 2016).

  • Dulinicz, M. Frühe Slawen Im Gebiet Zwischen Unterer Weichsel Und Elbe. Eine Archäologische Studie (Wachholtz, Neumünster, 2006).

  • Gnecchi-Ruscone, G. A. et al. Ancient genomes reveal origin and speedy trans-Eurasian migration of seventh century Avar elites. Cell 185, 1402–1413.e21 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortes-Lima, C. A. et al. The genetic legacy of the growth of Bantu-speaking peoples in Africa. Nature 625, 540–547 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heggarty, P. et al. Language timber with sampled ancestors help a hybrid mannequin for the origin of Indo-European languages. Science 381, eabg0818 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Patterson, N. et al. Large-scale migration into Britain in the course of the Middle to Late Bronze Age. Nature 601, 588–594 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick, S. et al. The Allen Ancient DNA Resource (AADR) a curated compendium of historic human genomes. Scientific Data 11, 182 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orfanou, E., Himmel, M., Aron, F. & Haak, W. Minimally-invasive sampling of pars petrosa (os temporale) for historic DNA extraction V.2. protocols.io (2020).

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal okaybp). Radiocarbon 62, 725–757 (2020).

    CAS 

    Google Scholar
     

  • Bronk Ramsey, C. Radiocarbon calibration and evaluation of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    CAS 

    Google Scholar
     

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from historic bones and enamel. Biotechniques 59, 87–93 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of extremely degraded DNA from historic bones, enamel and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of historic or broken DNA. Nat. Protoc. 8, 737–748 (2013).

    PubMed 

    Google Scholar
     

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for extremely multiplexed goal seize and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    PubMed 

    Google Scholar
     

  • Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase therapy for screening of historic DNA. Phil. Trans. R. Soc. B 370, 20130624 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q. et al. An early trendy human from Romania with a latest Neanderthal ancestor. Nature 524, 216–219 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peltzer, A. et al. EAGER: environment friendly historic genome reconstruction. Genome Biol. 17, 60 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: speedy adapter trimming, identification, and browse merging. BMC Res. Notes 9, 88 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and correct brief learn alignment with Burrows–Wheeler rework. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: quick approximate Bayesian estimates of historic DNA injury parameters. Bioinformatics 29, 1682–1684 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittnik, A., Wang, C.-C., Svoboda, J. & Krause, J. A molecular strategy to the sexing of the triple burial on the Upper Paleolithic Site of Dolní Věstonice. PLoS ONE 11, e0163019 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamnidis, T. C. et al. Ancient Fennoscandian genomes reveal origin and unfold of Siberian ancestry in Europe. Nat. Commun. 9, 5018 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: evaluation of subsequent technology sequencing information. BMC Bioinformatics 15, 356 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for historic DNA. Genome Biol. 16, 224 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazaridis, I. et al. Ancient human genomes counsel three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kearse, M. et al. Geneious Basic: an built-in and extendable desktop software program platform for the group and evaluation of sequence information. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification within the period of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Link, V. et al. ATLAS: evaluation instruments for low-depth and historic samples. Preprint at bioRxiv (2017).

  • Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing information utilizing massive reference panels. Nat. Genet. 53, 120–126 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Browning, S. R. & Browning, B. L. Rapid and correct haplotype phasing and missing-data inference for whole-genome affiliation research by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence information. Am. J. Hum. Genet. 108, 1880–1890 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morez, A. et al. Imputed genomes and haplotype-based analyses of the Picts of early medieval Scotland reveal fine-scale relatedness between Iron Age, early medieval and the trendy individuals of the UK. PLoS Genet. 19, e1010360 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L. & Browning, S. R. Improving the accuracy and effectivity of identity-by-descent detection in inhabitants information. Genetics 194, 459–471 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kennett, D. J. et al. Archaeogenomic proof reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohrlach, A. B. et al. BREADR: an R package deal for the Bayesian estimation of genetic relatedness from low-coverage genotype information. J. Open Source Softw. 10, 7916 (2025).


    Google Scholar
     

  • Popli, D., Peyrégne, S. & Peter, B. M. KIN: a technique to deduce relatedness from low-coverage historic DNA. Genome Biol. 24, 10 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipatov, M., Sanjeev, Ok., Patro, R. & Veeramah, Ok. R. Maximum probability estimation of organic relatedness from low protection sequencing information. Preprint at bioRxiv (2015).

  • Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness by way of time revealed by runs of homozygosity in historic DNA. Nat. Commun. 12, 5425 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison, M. L., Alcala, N. & Rosenberg, N. A. FSTruct: an FST-based instrument for measuring ancestry variation in inference of inhabitants construction. Mol. Ecol. Resour. 22, 2614–2626 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, S. R. & Browning, B. L. Accurate non-parametric estimation of latest efficient inhabitants dimension from segments of id by descent. Am. J. Hum. Genet. 97, 404–418 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, N., Price, A. L. & Reich, D. Population construction and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, N. et al. Ancient admixture in human historical past. Genetics 192, 1065–1093 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reich, D. et al. Reconstructing Native American inhabitants historical past. Nature 488, 370–374 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieson, I. et al. The genomic historical past of southeastern Europe. Nature 555, 197–203 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickrell, J. Ok. & Pritchard, J. Ok. Inference of inhabitants splits and mixtures from genome-wide allele frequency information. PLoS Genet. 8, e1002967 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novotná, P. & Blažek, V. Glottochronology and its software on the Balto-Slavic languages. Baltistica 42, 185–210 (2007).


    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09437-6
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago