Categories: Technology

A whole photonic built-in neuron for nonlinear all-optical computing

This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s43588-025-00866-x
and if you wish to take away this text from our website please contact us


  • LeCun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).

    Article 

    Google Scholar
     

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageWeb classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).

    Article 

    Google Scholar
     

  • Silver, D. et al. Mastering the sport of Go with out human information. Nature 550, 354–359 (2017).

    Article 

    Google Scholar
     

  • Guo, C. et al. Action2motion: Conditioned era of 3d human motions. In Proc. of the twenty eighth ACM International Conference on Multimedia, 2021–2029 (Association for Computing Machinery, 2020).

  • Bubeck, S. et al. Sparks of synthetic normal intelligence: early experiments with GPT-4. Preprint at (2023).

  • Fei, N. et al. Towards synthetic normal intelligence by way of a multimodal basis mannequin. Nat. Commun. 13, 3094 (2022).

    Article 

    Google Scholar
     

  • Moore, G. E. Cramming extra elements onto built-in circuits. Proc. IEEE 86, 82–85 (1998).

    Article 

    Google Scholar
     

  • Zhang, C. et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks. In Proc. 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 161–170 (2015).

  • Merolla, P. A. et al. One million spiking-neuron built-in circuit with a scalable communication community and interface. Science 345, 668–673 (2014).

    Article 

    Google Scholar
     

  • Horowitz, M. 1.1 computing’s power drawback (and what we will do about it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (Association for Computing Machinery, 2014).

  • Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Deep studying with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).

    Article 

    Google Scholar
     

  • Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article 

    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 

    Google Scholar
     

  • Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural community for picture classification. Nature 606, 501–506 (2022).

    Article 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).

    Article 

    Google Scholar
     

  • Lin, X. et al. All-optical machine studying utilizing diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Miscuglio, M. et al. Massively parallel amplitude-only Fourier neural community. Optica 7, 1812–1819 (2020).

    Article 

    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon 15, 367–373 (2021).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Neuromorphic photonic networks utilizing silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    Article 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for synthetic intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article 

    Google Scholar
     

  • Wetzstein, G. et al. Inference in synthetic intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article 

    Google Scholar
     

  • Xu, S., Wang, J., Yi, S. & Zou, W. High-order tensor move processing utilizing built-in photonic circuits. Nat. Commun. 13, 7970 (2022).

    Article 

    Google Scholar
     

  • Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).

  • Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article 

    Google Scholar
     

  • Larger, L. et al. High-speed photonic reservoir computing utilizing a time-delay-based structure: million phrases per second classification. Phys. Rev. 7, 011015 (2017).

    Article 

    Google Scholar
     

  • Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic info processing at gigabyte per second information charges utilizing transient states. Nat. Commun. 4, 1364 (2013).

    Article 

    Google Scholar
     

  • Vandoorne, Ok. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

    Article 

    Google Scholar
     

  • Huang, C. et al. A silicon photonic–digital neural community for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).

    Article 

    Google Scholar
     

  • Yan, T. et al. Nanowatt all-optical 3D notion for cell robotics. Sci. Adv. 10, eadn2031 (2024).

    Article 

    Google Scholar
     

  • Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).

    Article 

    Google Scholar
     

  • Zuo, Y. et al. All-optical neural community with nonlinear activation features. Optica 6, 1132–1137 (2019).

    Article 

    Google Scholar
     

  • Yan, T. et al. Fourier-space diffractive deep neural community. Phys. Rev. Lett. 123, 023901 (2019).

    Article 

    Google Scholar
     

  • Xia, F. et al. Nonlinear optical encoding enabled by recurrent linear scattering. Nat. Photon. 18, 1067–1075 (2024).

    Article 

    Google Scholar
     

  • Wanjura, C. C. & Marquardt, F. Fully nonlinear neuromorphic computing with linear wave scattering. Nat. Phys. 20, 1434–1440 (2024).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019).

    Article 

    Google Scholar
     

  • Jha, A., Huang, C. & Prucnal, P. R. Reconfigurable all-optical nonlinear activation features for neuromorphic photonics. Opt. Lett. 45, 4819–4822 (2020).

    Article 

    Google Scholar
     

  • Yu, W., Zheng, S., Zhao, Z., Wang, B. & Zhang, W. Reconfigurable low-threshold all-optical nonlinear activation features based mostly on an add-drop silicon microring resonator. IEEE Photonics J. 14, 1–7 (2022).


    Google Scholar
     

  • Bai, B. et al. Microcomb-based built-in photonic processing unit. Nat. Commun. 14, 66 (2023).

    Article 

    Google Scholar
     

  • Heebner, J. E., Wong, V., Schweinsberg, A., Boyd, R. W. & Jackson, D. J. Optical transmission traits of fiber ring resonators. IEEE J. Quantum Electron. 40, 726–730 (2004).

    Article 

    Google Scholar
     

  • Chen, S., Zhang, L., Fei, Y. & Cao, T. Bistability and self-pulsation phenomena in silicon microring resonators based mostly on nonlinear optical results. Opt. Express 20, 7454–7468 (2012).

    Article 

    Google Scholar
     

  • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based studying utilized to doc recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 

    Google Scholar
     

  • Zhu, W. et al. Human movement era: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 46, 2430–2449 (2023).

    Article 

    Google Scholar
     

  • Bandyopadhyay, S. et al. Single-chip photonic deep neural community with forward-only coaching. Nat. Photon. 18, 1335–1343 (2024).

    Article 

    Google Scholar
     

  • Hua, S. et al. An built-in large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

    Article 

    Google Scholar
     

  • Ahmed, S. R. et al. Universal photonic synthetic intelligence acceleration. Nature 640, 368–374 (2025).

    Article 

    Google Scholar
     

  • Wang, X. et al. The group interplay subject for studying and explaining pedestrian anticipation. Engineering 34, 70–82 (2024).

    Article 

    Google Scholar
     

  • Koch, C. & Segev, I. The position of single neurons in info processing. Nat. Neurosci. 3, 1171–1177 (2000).

    Article 

    Google Scholar
     

  • Bliss, T. V. & Collingridge, G. L. A synaptic mannequin of reminiscence: long-term potentiation within the hippocampus. Nature 361, 31–39 (1993).

    Article 

    Google Scholar
     

  • Kholodenko, B. N. Cell-signalling dynamics in time and house. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article 

    Google Scholar
     

  • Hamerly, R., Bandyopadhyay, S. & Englund, D. Accurate self-configuration of rectangular multiport interferometers. Phys. Rev. Appl. 18, 024019 (2022).

    Article 

    Google Scholar
     

  • Pai, S. et al. Experimentally realized in situ backpropagation for deep studying in photonic neural networks. Science 380, 398–404 (2023).

    Article 

    Google Scholar
     

  • Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for common multiport interferometers. Optica 3, 1460–1465 (2016).

    Article 

    Google Scholar
     

  • Wright, L. G. et al. Deep bodily neural networks skilled with backpropagation. Nature 601, 549–555 (2022).

    Article 

    Google Scholar
     

  • Xue, Z. et al. Fully ahead mode coaching for optical neural networks. Nature 632, 280–286 (2024).

    Article 

    Google Scholar
     

  • Trabelsi, C. et al. Deep complicated networks. Preprint at (2017).

  • Zhang, H. et al. An optical neural chip for implementing complex-valued neural community. Nat. Commun. 12, 457 (2021).

    Article 

    Google Scholar
     

  • Xiao, H., Rasul, Ok. & Vollgraf, R. Fashion-MNIST: a novel picture dataset for benchmarking machine studying algorithms. Preprint at (2017).

  • Orchard, G., Jayawant, A., Cohen, G. Ok. & Thakor, N. Converting static picture datasets to spiking neuromorphic datasets utilizing saccades. Front. Neurosci. 9, 437 (2015).

    Article 

    Google Scholar
     

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by quick computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article 

    Google Scholar
     

  • Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter, S. Gans skilled by a two time-scale replace rule converge to a neighborhood nash equilibrium. Adv. Neural Inf. Process. Syst. 30, 6627–6638 (2017).


    Google Scholar
     

  • Bińkowski, M., Sutherland, D. J., Arbel, M. & Gretton, A. Demystifying MMD GANs. Preprint at (2018).

  • Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W synthetic normal intelligence. Science 384, 202–209 (2024).

    Article 

    Google Scholar
     

  • Zhao, P. et al. Ultra-broadband optical amplification utilizing nonlinear built-in waveguides. Nature 640, 918–923 (2025).

    Article 

    Google Scholar
     

  • Dong, B. et al. Higher-dimensional processing utilizing a photonic tensor core with continuous-time information. Nat. Photon. 17, 1080–1088 (2023).

    Article 

    Google Scholar
     

  • Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).

    Article 

    Google Scholar
     

  • Yan, T. Code for a whole photonic built-in neuron (PIN). Zenodo (2025).


  • This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s43588-025-00866-x
    and if you wish to take away this text from our website please contact us

    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    3 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    3 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    3 days ago