This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41566-025-01751-9
and if you wish to take away this text from our web site please contact us
Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum supplies. Nat. Mater. 16, 1077–1088 (2017).
de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast management in quantum supplies. Rev. Mod. Phys. 93, 041002 (2021).
Ma, Q., Grushin, A. G. & Burch, Ok. S. Topology and geometry beneath the nonlinear electromagnetic highlight. Nat. Mater. 20, 1601–1614 (2021).
Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D supplies and topological supplies. Nat. Rev. Phys. 4, 33–48 (2022).
Karni, O., Esin, I. & Dani, Ok. M. Through the lens of a momentum microscope: viewing light-induced quantum phenomena in 2D supplies. Adv. Mater. 35, 2204120 (2023).
Zhai, E. et al. The rise of semi-metal electronics. Nat. Rev. Electr. Eng. 1, 497–515 (2024).
Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).
Wang, C. et al. Observation of Fermi arc and its reference to bulk states within the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 241119 (2016).
Feng, B. et al. Spin texture in type-II Weyl semimetal WTe2. Phys. Rev. B 94, 195134 (2016).
Bruno, F. Y. et al. Observation of enormous topologically trivial Fermi arcs within the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 121112 (2016).
Sánchez-Barriga, J. et al. Surface Fermi arc connectivity within the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 94, 161401(R) (2016).
Sante, D. D. et al. Three-dimensional digital construction of the type-II Weyl semimetal WTe2. Phys. Rev. Lett. 119, 026403 (2017).
Li, P. et al. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 8, 2150 (2017).
Zhang, Q. et al. Lifshitz transitions induced by temperature and floor doping in type-II Weyl semimetal candidate Td-WTe2. Phys. Status Solidi Rapid Res. Lett. 11, 1700209 (2017).
Lin, C.-L. et al. Visualizing type-II Weyl factors in tungsten ditelluride by quasiparticle interference. ACS Nano 11, 11459–11465 (2017).
Zhang, W. et al. Quasiparticle interference of floor states within the type-II Weyl semimetal WTe2. Phys. Rev. B 96, 165125 (2017).
Yuan, Y. et al. Quasiparticle interference of Fermi arc states within the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 97, 165435 (2018).
Sie, E. J. et al. An ultrafast symmetry swap in a Weyl semimetal. Nature 565, 61–66 (2019).
Hein, P. et al. Mode-resolved reciprocal area mapping of electron-phonon interplay within the Weyl semimetal candidate Td-WTe2. Nat. Commun. 11, 2613 (2020).
Guan, M.-X., Wang, E., You, P.-W., Sun, J.-T. & Meng, S. Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe2. Nat. Commun. 12, 1885 (2021).
Das, P. Ok. et al. Electronic properties of candidate type-II Weyl semimetal WTe2. A assessment perspective. Electron. Struct. 1, 014003 (2019).
Kwon, H. et al. Quasiparticle interference and impurity resonances on WTe2. Nano Res. 13, 2534–2540 (2020).
Wu, Y. et al. Observation of Fermi arcs within the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 94, 121113 (2016).
Caputo, M. et al. Dynamics of out-of-equilibrium electron and gap pockets within the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 97, 115115 (2018).
Ji, S., Granas, O. & Weissenrieder, J. Manipulation of stacking order in Td-WTe2 by ultrafast optical excitation. ACS Nano 15, 8826–8835 (2021).
Qi, Y. et al. Traversing double-well potential vitality surfaces: photoinduced concurrent intralayer and interlayer structural transitions XTe2 (X = Mo, W). ACS Nano 16, 11124–11135 (2022).
Drueke, E., Yang, J. & Zhao, L. Observation of robust and anisotropic nonlinear optical results by means of polarization-resolved optical spectroscopy within the type-II Weyl semimetal Td-WTe2. Phys. Rev. B 104, 064304 (2021).
Soranzio, D. et al. Strong modulation of service efficient mass in WTe2 by way of coherent lattice manipulation. npj 2D Mater. Appl. 6, 71 (2022).
Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2022).
Fei, Z. et al. Ferroelectric switching of a two-dimensional metallic. Nature 560, 336–339 (2018).
Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).
Ni, Z. et al. Mechanically tunable spontaneous vertical cost redistribution in few-layer WTe2. J. Phys. Chem. C 124, 2008–2012 (2020).
Xiao, J. et al. Berry curvature reminiscence by means of electrically pushed stacking transitions. Nat. Phys. 16, 1028–1034 (2020).
Rossi, A. et al. Two section transitions pushed by floor electron doping in WTe2. Phys. Rev. B 102, 121110(R) (2020).
Chen, W.-H. et al. Noncentrosymmetric traits of defects on WTe2. Phys. Rev. B 106, 075428 (2022).
Tao, Y., Schneeloch, J. A., Aczel, A. A. & Louca, D. Td to 1T′ structural section transition within the WTe2 Weyl semimetal. Phys. Rev. B 102, 060103 (2020).
Zhou, Y. et al. Pressure-induced Td to 1T′ structural section transition in WTe2. AIP Adv. 6, 075008 (2016).
Jelic, V. et al. Ultrafast terahertz management of utmost tunnel currents by means of single atoms on a silicon floor. Nat. Phys. 13, 591–598 (2017).
Peller, D. et al. Quantitative sampling of atomic-scale electromagnetic waveforms. Nat. Photon. 15, 143–147 (2021).
Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast movement of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).
Cocker, T. L., Jelic, V., Hillenbrand, R. & Hegmann, F. A. Nanoscale terahertz scanning probe microscopy. Nat. Photon. 15, 558–569 (2021).
Jelic, V. et al. Atomic-scale terahertz time-domain spectroscopy. Nat. Photon. 18, 898–904 (2024).
He, B. et al. Coherent optical phonon oscillation and potential digital softening in WTe2 crystals. Sci. Rep. 6, 30487 (2016).
Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).
Ammerman, S. E. et al. Lightwave-driven scanning tunnelling spectroscopy of atomically exact graphene nanoribbons. Nat. Commun. 12, 6794 (2021).
Chen, C. J. Introduction to Scanning Tunneling Microscopy third edn (Oxford Univ. Press, 2021).
Giessibl, F. J., Hembacher, S., Bielefeldt, H. & Mannhart, J. Subatomic options on the silicon (111)-(7 × 7) floor noticed by atomic power microscopy. Science 289, 422–425 (2000).
Welker, J. & Giessibl, F. J. Revealing the angular symmetry of chemical bonds by atomic power microscopy. Science 336, 444–449 (2012).
Emmrich, M. et al. Subatomic decision power microscopy reveals inside construction and adsorption websites of small iron clusters. Science 348, 308–311 (2015).
Chang, T.-R. et al. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1–xTe2. Nat. Commun. 7, 10639 (2016).
Kim, H.-J., Kang, S.-H., Hamada, I. & Son, Y.-W. Origins of the structural section transitions in MoTe2 and WTe2. Phys. Rev. B 95, 180101(R) (2017).
Erba, A. et al. CRYSTAL23: a program for computational stable state physics and chemistry. J. Chem. Theory Comput. 19, 6891–6932 (2022).
Bodo, F., Desmarais, J. Ok. & Erba, A. Spin present density useful idea of Weyl semimetals. Phys. Rev. B 105, 125108 (2022).
Schmucker, S. W. et al. Field-directed sputter sharpening for tailor-made probe supplies and atomic-scale lithography. Nat. Commun. 3, 935 (2012).
Nečas, D. & Klapetek, P. Gwyddion: an open-source software program for SPM knowledge evaluation. Cent. Eur. J. Phys. 10, 181–188 (2012).
Hirori, H., Blanchard, F. & Tanaka, Ok. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Appl. Phys. Lett. 98, 091106 (2011).
Ammerman, S. E., Wei, Y., Everett, N., Jelic, V. & Cocker, T. L. Algorithm for subcycle terahertz scanning tunneling spectroscopy. Phys. Rev. B 105, 115427 (2022).
Lloyd-Hughes, J. et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. J. Phys. Condens. Matter 33, 353001 (2021).
Adamo, C. & Barone, V. Toward dependable density useful strategies with out adjustable parameters: the PBE0 mannequin. J. Chem. Phys. 110, 6158–6170 (1999).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density useful dispersion correction (DFT-D) for the 94 parts H-Pu. J. Chem. Phys. 132, 154104 (2010).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Momma, Ok. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology knowledge. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Xu, S.-Y. et al. Discovery of Lorentz-violating sort II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).
Lv, Y.-Y. et al. Experimental remark of anisotropic Adler-Bell-Jackiw anomaly in type-II Weyl semimetal WTe1.98 crystals on the quasiclassical regime. Phys. Rev. Lett. 118, 096603 (2017).
Rüßmann, P. et al. Universal scattering response throughout the type-II Weyl semimetal section diagram. Phys. Rev. B 97, 075106 (2018).
This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41566-025-01751-9
and if you wish to take away this text from our web site please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…