This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09511-z
and if you wish to take away this text from our web site please contact us
Schubert, M. et al. Anisotropy, phonon modes, and free cost provider parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).
Ma, W. L. et al. In-plane anisotropic and ultra-low-loss polaritons in a pure van der Waals crystal. Nature 562, 557–562 (2018).
Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).
Bubnova, R., Volkov, S., Albert, B. & Filatov, S. Borates—crystal buildings of potential nonlinear optical supplies: excessive anisotropy of the thermal enlargement attributable to anharmonic atomic vibrations. Crystals 7, 93 (2017).
Lin, I. C. et al. Extraction of anisotropic thermal vibration components for oxygen from the Ti L2,3-edge in SrTiO3. J. Phys. Chem. C 127, 17802–17808 (2023).
Abramov, Y. A., Tsirelson, V. G., Zavodnik, V. E., Ivanov, S. A. & Brown, I. D. The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction evaluation. Acta Crystallogr. B 51, 942–951 (1995).
Gong, Y. et al. Polarized Raman scattering of in-plane anisotropic phonon modes in α-MoO3. Adv. Opt. Mater. 10, 2200038 (2022).
Jauch, W. & Reehuis, M. Electron-density distribution in cubic SrTiO3: a comparative gamma-ray diffraction research. Acta Crystallogr. A 61, 411–417 (2005).
Yan, X., Gadre, C. A., Aoki, T. & Pan, X. Probing molecular vibrations by monochromated electron microscopy. Trends Chem. 4, 76–90 (2022).
Krivanek, O. L. et al. Vibrational spectroscopy within the electron microscope. Nature 514, 209–212 (2014).
Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy within the scanning transmission electron microscope. Science 367, 1124–1127 (2020).
Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).
Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).
Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).
Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).
Zeiger, P. M. & Rusz, J. Simulations of spatially and angle-resolved vibrational electron vitality loss spectroscopy for a system with a planar defect. Phys. Rev. B 104, 094103 (2021).
Hoglund, E. R. et al. Direct visualization of localized vibrations at complicated grain boundaries. Adv. Mater. 35, e2208920 (2023).
Haas, B. et al. Atomic-resolution mapping of localized phonon modes at grain boundaries. Nano Lett. 23, 5975–5980 (2023).
Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic decision. Phys. Rev. Lett. 122, 016103 (2019).
Venkatraman, Ok., Levin, B. D. A., March, Ok., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic decision with electron affect scattering. Nat. Phys. 15, 1237–1241 (2019).
Sirenko, A. A. et al. Soft-mode hardening in SrTiO3 skinny movies. Nature 404, 373–376 (2000).
Huang, J. Ok. et al. High-kappa perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).
Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).
Gao, W. et al. Real-space charge-density imaging with sub-ångström decision by four-dimensional electron microscopy. Nature 575, 480–484 (2019).
Casella, L. & Zaccone, A. Soft mode concept of ferroelectric section transitions within the low-temperature section. J. Phys. Condens. Matter 33, 165401 (2021).
Burns, G. & Dacol, F. H. Lattice modes in ferroelectric perovskites. III. Soft modes in BaTiO3. Phys. Rev. B 18, 5750–5755 (1978).
Tian, Z. et al. Preparation of nano BaTiO3‐primarily based ceramics for multilayer ceramic capacitor utility by chemical coating methodology. J. Am. Ceram. Soc. 92, 830–833 (2009).
Jeong, D. S. et al. Emerging reminiscences: resistive switching mechanisms and present standing. Rep. Prog. Phys. 75, 076502 (2012).
Ji, D. et al. Freestanding crystalline oxide perovskites right down to the monolayer restrict. Nature 570, 87–90 (2019).
Sun, H. et al. Nonvolatile ferroelectric area wall reminiscence built-in on silicon. Nat. Commun. 13, 4332 (2022).
He, R. et al. Structural section transitions in SrTiO3 from deep potential molecular dynamics. Phys. Rev. B 105, 064104 (2022).
van der Marel, D., Barantani, F. & Rischau, C. W. Possible mechanism for superconductivity in doped SrTiO3. Phys. Rev. Res. 1, 013003 (2019).
Niedermeier, C. A. et al. Phonon scattering restricted mobility within the consultant cubic perovskite semiconductors SrGeO3, BaSnO3, and SrTiO3. Phys. Rev. B 101, 125206 (2020).
Smith, J., Huang, Z., Gao, W., Zhang, G. & Chi, M. Atomic decision cryogenic 4D-STEM imaging through sturdy distortion correction. ACS Nano 17, 11327–11334 (2023).
Zeiger, P. M. & Rusz, J. Efficient and versatile mannequin for vibrational STEM-EELS. Phys. Rev. Lett. 124, 025501 (2020).
Zeiger, P. M. & Rusz, J. Frequency-resolved frozen phonon multislice methodology and its utility to vibrational electron vitality loss spectroscopy utilizing parallel illumination. Phys. Rev. B 104, 104301 (2021).
Cancellieri, C. et al. Polaronic steel state on the LaAlO3/SrTiO3 interface. Nat. Commun. 7, 10386 (2016).
Krivanek, O. et al. Damage-free evaluation of organic supplies by vibrational spectroscopy within the EM. Microsc. Microanal. 26, 108–110 (2020).
Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).
Sun, H. et al. Signatures of superconductivity close to 80 Ok in a nickelate beneath excessive strain. Nature 621, 493–498 (2023).
Yang, H. et al. Phonon modes and electron–phonon coupling on the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).
Nelson, C. T. et al. Domain dynamics throughout ferroelectric switching. Science 334, 968–971 (2011).
Spiecker, E. Determination of crystal polarity from bend contours in transmission electron microscope photographs. Ultramicroscopy 92, 111–132 (2002).
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a brand new software program device for the automated evaluation of atomic decision photographs utilizing two-dimensional Gaussian becoming. Adv. Struct. Chem. Imaging 3, 9 (2017).
Yan, X. et al. Curvature-induced one-dimensional phonon polaritons at edges of folded boron nitride sheets. Nano Lett. 22, 9319–9326 (2022).
Culjak, I., Abram, D., Pribanic, T., Dzapo, H. & Cifrek, M. A quick introduction to OpenCV. In Proc. thirty fifth International Convention MIPRO (ed. Biljanović, P.) 1725–1730 (IEEE, 2012).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).
Gonze, X. & Lee, C. Dynamical matrices, Born efficient fees, dielectric permittivity tensors, and interatomic drive constants from density-functional perturbation concept. Phys. Rev. B 55, 10355–10368 (1997).
Thompson, A. P. et al. LAMMPS – a versatile simulation device for particle-based supplies modeling on the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Carreras, A. phonoLAMMPS Documentation. GitHub (2023).
Carreras, A., Togo, A. & Tanaka, I. DynaPhoPy: a code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017).
Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation methods in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).
Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn 92, 012001 (2023).
Zhang, Y. et al. DP-GEN: a concurrent studying platform for the technology of dependable deep studying primarily based potential vitality fashions. Comput. Phys. Commun. 253, 107206 (2020).
Barthel, J. Dr. Probe: a software program for high-resolution STEM picture simulation. Ultramicroscopy 193, 1–11 (2018).
Momma, Ok. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology knowledge. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Servoin, J. L., Luspin, Y. & Gervais, F. Infrared dispersion in SrTiO3 at excessive temperature. Phys. Rev. B 22, 5501–5506 (1980).
Stirling, W. G. Neutron inelastic scattering research of the lattice dynamics of strontium titanate: harmonic fashions. J. Phys. C 5, 2711 (1972).
Zhou, J.-J., Hellman, O. & Bernardi, M. Electron-phonon scattering within the presence of sentimental modes and electron mobility in SrTiO3 perovskite from first ideas. Phys. Rev. Lett. 121, 226603 (2018).
Scalabrin, A., Chaves, A. S., Shim, D. S. & Porto, S. P. S. Temperature dependence of the A1 and E optical phonons in BaTiO3. Phys. Status Solidi B 79, 731–742 (1977).
Hermet, P., Veithen, M. & Ghosez, P. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density useful concept. J. Phys. Condens. Matter 21, 215901 (2009).
Evarestov, R. A. & Bandura, A. V. First-principles calculations on the 4 phases of BaTiO3. J. Comput. Chem. 33, 1123–1130 (2012).
Ehsan, S., Arrigoni, M., Madsen, G. Ok. H., Blaha, P. & Tröster, A. First-principles self-consistent phonon method to the research of the vibrational properties and structural section transition of BaTiO3. Phys. Rev. B 103, 094108 (2021).
This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09511-z
and if you wish to take away this text from our web site please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…