Categories: Science

Increasing tree measurement throughout Amazonia

This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41477-025-02097-4
and if you wish to take away this text from our web site please contact us


  • Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Phillips, O. L. et al. Changes within the carbon steadiness of tropical forests: proof from long-term plots. Science 282, 439–442 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bauman, D. et al. Tropical tree mortality has elevated with rising atmospheric water stress. Nature 608, 528–533 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bennett, A. C. et al. Sensitivity of South American tropical forests to an excessive local weather anomaly. Nat. Clim. Chang. 13, 967–974 (2023).

    Article 

    Google Scholar
     

  • Hietz, P. et al. Long-term change within the nitrogen cycle of tropical forests. Science 334, 664–666 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lloyd, J. & Farquhar, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest bushes. Philos. Trans. R. Soc. B 363, 1811–1817 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Keenan, T. F. et al. A constraint on historic development in world photosynthesis as a result of rising CO2. Nat. Clim. Chang. 13, 1376–1381 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A. & Laurance, W. F. Changing ecology of tropical forests: proof and drivers. Annu. Rev. Ecol. Evol. Syst. 40, 529–549 (2009).

    Article 

    Google Scholar
     

  • Coomes, D. A., Lines, E. R. & Allen, R. B. Moving on from Metabolic Scaling Theory: hierarchical fashions of tree development and uneven competitors for mild. J. Ecol. 99, 748–756 (2011).

    Article 

    Google Scholar
     

  • Falster, D. S. & Westoby, M. Plant peak and evolutionary video games. Trends Ecol. Evol. 18, 337–343 (2003).

    Article 

    Google Scholar
     

  • Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and inhabitants density. Nature 395, 163–165 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Dybzinski, R., Farrior, C. E. & Pacala, S. W. Increased forest carbon storage with elevated atmospheric CO2 regardless of nitrogen limitation: a game-theoretic allocation mannequin for bushes in competitors for nitrogen and lightweight. Glob. Chang. Biol. 21, 1182–1196 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Stephenson, N. L. et al. Rate of tree carbon accumulation will increase constantly with tree measurement. Nature 507, 90–93 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schwinning, S. & Weiner, J. Mechanisms figuring out the diploma of measurement asymmetry in competitors amongst crops. Oecologia 113, 447–455 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Cheng, D. L. & Niklas, Okay. J. Above- and below-ground biomass relationships throughout 1534 forested communities. Ann. Bot. 99, 95–102 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Niklas, Okay. J., Midgley, J. J. & Rand, R. H. Tree measurement frequency distributions, plant density, age and group disturbance. Ecol. Lett. 6, 405–411 (2003).

    Article 

    Google Scholar
     

  • Muller-Landau, H. C. et al. Comparing tropical forest tree measurement distributions with the predictions of metabolic ecology and equilibrium fashions. Ecol. Lett. 9, 589–602 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • DeMalach, N., Zaady, E., Weiner, J. & Kadmon, R. Size asymmetry of useful resource competitors and the construction of plant communities. J. Ecol. 104, 899–910 (2016).

    Article 

    Google Scholar
     

  • Ehleringer, J. & Björkman, O. Quantum yields for CO2 uptake in C3 and C4 crops: dependence on temperature, CO2, and O2 focus. Plant Physiol. 59, 86–90 (1977).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lewis, S. L., Malhi, Y. & Phillips, O. L. Fingerprinting the impacts of world change on tropical forests. Philos. Trans. R. Soc. B 359, 437–462 (2004).

    Article 
    CAS 

    Google Scholar
     

  • King, D. A. Influence of sunshine degree on the expansion and morphology of saplings in a Panamanian forest. Am. J. Bot. 81, 948–957 (1994).

    Article 

    Google Scholar
     

  • Augspurger, C. Okay. Light necessities of neotropical tree seedlings: a comparative examine of development and survival. J. Ecol. 72, 777 (1984).

    Article 

    Google Scholar
     

  • Lewis, S. L. & Tanner, E. V. J. Effects of above- and belowground competitors on development and survival of rain forest tree seedlings. Ecology 81, 2525–2538 (2000).

    Article 

    Google Scholar
     

  • Würth, M. Okay. R., Winter, Okay. & Körner, C. In situ responses to elevated CO2 in tropical forest understorey crops. Funct. Ecol. 12, 886–895 (1998).

    Article 

    Google Scholar
     

  • McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Brienen, R. et al. Paired evaluation of tree ring width and carbon isotopes signifies when controls on tropical tree development change from mild to water limitations. Tree Physiol. 42, 1131–1148 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bennett, A. C., Mcdowell, N. G., Allen, C. D. & Anderson-Teixeira, Okay. J. Larger bushes undergo most throughout drought in forests worldwide. Nat. Plants 1, 1–5 (2015).

    Article 

    Google Scholar
     

  • Heckenberger, M. J. et al. Amazonia 1492: pristine forest or cultural parkland? Science 301, 1710–1714 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barlow, J., Gardner, T. A., Lees, A. C., Parry, L. & Peres, C. A. How pristine are tropical forests? An ecological perspective on the pre-Columbian human footprint in Amazonia and implications for up to date conservation. Biol. Conserv. 151, 45–49 (2012).

    Article 

    Google Scholar
     

  • Clement, C. R. et al. The domestication of Amazonia earlier than European conquest. Proc. R. Soc. B 282, 20150813 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, S. J. Tropical forests in a altering setting. Trends Ecol. Evol. 20, 553–560 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Feeley, Okay. J. et al. The position of hole section processes within the biomass dynamics of tropical forests. Proc. R. Soc. B 274, 2857–2864 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connell, J. H. & Slatyer, R. O. Mechanisms of succession in pure communities and their position in group stability and group. Am. Nat. 111, 1119–1144 (1977).

    Article 

    Google Scholar
     

  • Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to local weather change. Glob. Chang. Biol. 25, 39–56 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Pregitzer, Okay. S., Burton, A. J., Zak, D. R. & Talhelm, A. F. Simulated power nitrogen deposition will increase carbon storage in Northern Temperate forests. Glob. Chang. Biol. 14, 142–153 (2008).

    Article 

    Google Scholar
     

  • Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Glob. Chang. Biol. 24, e416–e431 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Quesada, C. A. et al. Variations in chemical and bodily properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Davidson, E. A. et al. Recuperation of nitrogen biking in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition throughout 4 a long time. Glob. Biogeochem. Cycles 33, 100–107 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Nitrogen deposition in tropical forests from savanna and deforestation fires. Glob. Chang. Biol. 16, 2024–2038 (2010).

    Article 

    Google Scholar
     

  • Damasceno, A. R. et al. In situ short-term responses of Amazonian understory crops to elevated CO2. Plant Cell Environ. 47, 1865–1876 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Granados, J. & Körner, C. In deep shade, elevated CO2 will increase the vigor of tropical climbing crops. Glob. Chang. Biol. 8, 1109–1117 (2002).

    Article 

    Google Scholar
     

  • Piponiot, C. et al. Distribution of biomass dynamics in relation to tree measurement in forests internationally. New Phytol. 234, 1664–1677 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hubau, W. et al. The persistence of carbon within the African forest understory. Nat. Plants 5, 133–140 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon hunger. Nature 528, 119–122 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Searle, E. B. & Chen, H. Y. H. Temporal declines in tree longevity related to sooner lifetime development charges in boreal forests. Environ. Res. Lett. 13, 125003 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Marqués, L. et al. Tree development enhancement drives a persistent biomass achieve in unmanaged temperate forests. AGU Adv. 4, e2022AV000859 (2023).

    Article 

    Google Scholar
     

  • Needham, J. F., Chambers, J., Fisher, R., Knox, R. & Koven, C. D. Forest responses to simulated elevated CO2 beneath alternate hypotheses of size- and age-dependent mortality. Glob. Chang. Biol. 26, 5734–5753 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Malhi, Y. et al. An worldwide community to observe the construction, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439–450 (2002).

    Article 

    Google Scholar
     

  • Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.internet: an online utility and analysis device to handle and analyse tropical forest plot knowledge. J. Veg. Sci. 22, 610–613 (2011).

    Article 

    Google Scholar
     

  • ForestPlots.internet, Blundo, C. et al. Taking the heartbeat of Earth’s tropical forests utilizing networks of extremely distributed plots. Biol. Conserv. 260,108849 (2021).

  • Massi, Okay. G. et al. Does soil pyrogenic carbon decide plant purposeful traits in Amazon Basin forests? Plant Ecol. 218, 1047–1062 (2017).

    Article 

    Google Scholar
     

  • Phillips, O. L., Brienen, R. J. W., Feldpausch, T. R., Phillips, O. & Baker, T. Field Manual for Plot Establishment and Remeasurement Field Manual for Plot Establishment and Remeasurement (Amazon Forest Inventory Network, 2021); https://www.researchgate.net/publication/230577331

  • Sheil, D. A critique of everlasting plot strategies and evaluation with examples from Budongo Forest, Uganda. For. Ecol. Manag. 77, 11–34 (1995).

    Article 

    Google Scholar
     

  • Talbot, J. et al. Methods to estimate aboveground wooden productiveness from long-term forest stock plots. For. Ecol. Manag. 320, 30–38 (2014).

    Article 

    Google Scholar
     

  • Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sen, A. & Foster, J. On Economic Inequality (Oxford University Press, 1973); https://doi.org/10.1093/0198281935.001.0001

  • Weiner, J. Size Hierarchies in Experimental Populations of Annual Plants. Ecology 66, 743–752 (1985).

    Article 

    Google Scholar
     

  • Zeileis, A. Measuring Inequality, Concentration, and Poverty [R package ineq version 0.2-13] (2015); https://doi.org/10.32614/CRAN.package.ineq

  • Lima, R. A. F., Muller-Landau, H. C., Prado, P. I. & Condit, R. How do measurement distributions relate to concurrently measured demographic charges? Evidence from over 150 tree species in Panama. J. Trop. Ecol. 32, 179–192 (2016).

    Article 

    Google Scholar
     

  • Zanne, A. E. et al. Data from: Towards a worldwide wooden economics spectrum [Dataset]. Dryad (2009).

  • Chave, J. et al. Towards a worldwide wooden economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Fauset, S. et al. Drought-induced shifts within the floristic and purposeful composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Feeley, Okay. J., Davies, S. J., Perez, R., Hubbell, S. P. & Foster, R. B. Directional modifications within the species composition of a tropical forest. Ecology 92, 871–882 (2011).

    Article 
    PubMed 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s41477-025-02097-4
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 weeks ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 weeks ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 weeks ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 weeks ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 weeks ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 weeks ago