Categories: Technology

NanoVar: a complete workflow for structural variant detection to uncover the genome’s hidden patterns

This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41596-025-01270-5
and if you wish to take away this text from our website please contact us


  • Nesta, A. V., Tafur, D. & Beck, C. R. Hotspots of human mutation. Trends Genet. 37, 717–729 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Eichler, E. E. Genetic variation, comparative genomics, and the analysis of illness. N. Engl. J. Med. 381, 64–74 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang, A. W. et al. Towards a complete structural variation map of a person human genome. Genome Biol. 11, R52 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilissen, C., Hoischen, A., Brunner, H. G. & Veltman, J. A. Unlocking Mendelian illness utilizing exome sequencing. Genome Biol. 12, 228 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its purposes. Nat. Rev. Genet. 21, 597–614 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantere, T., Kersten, S. & Hoischen, A. Long-read sequencing rising in medical genetics. Front. Genet. 10, 426 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merker, J. D. et al. Long-read genome sequencing identifies causal structural variation in a Mendelian illness. Genet. Med. 20, 159–163 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Miao, H. et al. Long-read sequencing recognized a causal structural variant in an exome-negative case and enabled preimplantation genetic analysis. Hereditas 155, 32 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loomis, E. W. et al. Sequencing the unsequenceable: expanded CGG-repeat alleles of the delicate X gene. Genome Res. 23, 121–128 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schüle, B. et al. Parkinson’s illness related to pure ATXN10 repeat growth. NPJ Parkinson’s Dis. 3, 27 (2017).

    Article 

    Google Scholar
     

  • Höijer, I. et al. Detailed evaluation of HTT repeat components in human blood utilizing focused amplification-free long-read sequencing. Hum. Mutat. 39, 1262–1272 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cumming, S. A. et al. De novo repeat interruptions are related to diminished somatic instability and gentle or absent scientific options in myotonic dystrophy kind 1. Eur. J. Hum. Genet. 26, 1635–1647 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, Ok. F. Nanopore sequencing know-how, bioinformatics and purposes. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurk, S. et al. The full sequence of a human genome. Science 376, 44–53 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lander, E. S. et al. Initial sequencing and evaluation of the human genome. Nature 409, 860–921 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat components. Science 376, eabk3112 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayarpadikannan, S. & Kim, H.-S. The impression of transposable components in genome evolution and genetic instability and their implications in numerous ailments. Genomics Inform. 12, 98–104 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hancks, D. C. & Kazazian, H. H. Roles for retrotransposon insertions in human illness. Mob. DNA 7, 9 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, E. J. et al. The Mobile Element Locator Tool (MELT): population-scale cellular aspect discovery and biology. Genome Res. 27, 1916–1929 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thung, D. T. et al. Mobster: correct detection of cellular aspect insertions in subsequent era sequencing knowledge. Genome Biol. 15, 488 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tubio, J. M. C. et al. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in most cancers genomes. Science 345, 1251343 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torene, R. I. et al. Mobile aspect insertion detection in 89,874 scientific exomes. Genet. Med. 22, 974–978 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiraishi, Y. et al. Precise characterization of somatic advanced structural variations from tumor/management paired long-read sequencing knowledge with nanomonsv. Nucleic Acids Res. 51, e74 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, Y. et al. Overview of structural variation calling: simulation, identification, and visualization. Comput. Biol. Med. 145, 105534 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • De Coster, W. et al. Structural variants recognized by Oxford Nanopore PromethION sequencing of the human genome. Genome Res. 29, 1178–1187 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. A sensible information for structural variation detection in human genome. Curr. Protoc. Hum. Genet. 107, e103 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tham, C. Y. et al. NanoVar: correct characterization of sufferers’ genomic structural variants utilizing low-depth nanopore sequencing. Genome Biol. 21, 56 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, Ok., Misawa, Ok., Kuma, Ok. & Miyata, T. MAFFT: a novel technique for fast a number of sequence alignment based mostly on quick Fourier remodel. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smit, AFA, Hubley, R. & Green, P. RepeatMasker Open-4.0 (2013–2015).

  • Cretu Stancu, M. et al. Mapping and phasing of structural variation in affected person genomes utilizing nanopore sequencing. Nat. Commun. 8, 1326 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, L. et al. Picky comprehensively detects high-resolution structural variants in nanopore lengthy reads. Nat. Methods 15, 455–460 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedlazeck, F. J. et al. Accurate detection of advanced structural variations utilizing single molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 42, 1571–1580 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, T. et al. cuteFC: regenotyping structural variants by means of an correct and environment friendly force-calling technique. Genome Biol. 26, 166 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, T. et al. Long-read sequencing settings for environment friendly structural variation detection based mostly on complete analysis. BMC Bioinforma. 22, 552 (2021).

    Article 

    Google Scholar
     

  • Heller, D. & Vingron, M. SVIM: structural variant identification utilizing mapped lengthy reads. Bioinformatics 35, 2907–2915 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tham, C. Y. & Benoukraf, T. Correspondence on NanoVar’s efficiency outlined by Jiang T. et al. in “Long-read sequencing settings for efficient structural variation detection based on comprehensive evaluation”. BMC Bioinformatics 24, 350 (2023).

  • Dierckxsens, N., Li, T., Vermeesch, J. R. & Xie, Z. A benchmark of structural variation detection by lengthy reads by means of a practical simulated mannequin. Genome Biol. 22, 342 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z. et al. Structural variants within the Chinese inhabitants and their impression on phenotypes, ailments and inhabitants adaptation. Nat. Commun. 12, 6501 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. H., Luo, C., Golding, S. G., Ioffe, J. B. & Zhou, X. M. Tradeoffs in alignment and assembly-based strategies for structural variant detection with long-read sequencing knowledge. Nat. Commun. 15, 2447 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Comparison of structural variants detected by PacBio-CLR and ONT sequencing in pear. BMC Genomics 23, 830 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiol, A., Jurado-Ruiz, F., López-Girona, E. & Aranzana, M. J. An environment friendly CRISPR-Cas9 enrichment sequencing technique for characterizing advanced and extremely duplicated genomic areas. A case research within the Prunus salicina LG3-MYB10 genes cluster. Plant Methods 18, 105 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing knowledge. Bioinformatics 34, 2666–2669 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Coster, W. & Rademakers, R. NanoPack2: population-scale analysis of long-read sequencing knowledge. Bioinformatics 39, btad311 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asmaa, S., Tham, C. Y., Dyer, M. & Benoukraf, T. Dataset for ‘NanoVar: a Comprehensive Workflow for Structural Variant Detection to uncover the Genome’s Hidden Patterns’. Zenodo (2025).

  • Kiełbasa, S. M., Wan, R., Sato, Ok., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparability. Genome Res. 21, 487–493 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sović, I. et al. Fast and delicate mapping of nanopore sequencing reads with GraphMap. Nat. Commun. 7, 11307 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, A., Lin, T. & Xing, J. Evaluating nanopore sequencing knowledge processing pipelines for structural variation identification. Genome Biol. 20, 237 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeffares, D. C. et al. Transient structural variations have sturdy results on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • English, A. C., Menon, V. Ok., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparability preserves allelic range. Genome Biol. 23, 271 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirsche, M. et al. Jasmine and Iris: population-scale structural variant comparability and evaluation. Nat. Methods 20, 408–417 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Z. et al. A sequence-aware merger of genomic structural variations at inhabitants scale. Nat. Commun. 15, 960 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yates, A. et al. The Ensembl REST API: Ensembl knowledge for any language. Bioinformatics 31, 143–145 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Geoffroy, V. et al. AnnotSV: an built-in device for structural variations annotation. Bioinformatics 34, 3572–3574 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cunningham, F., Moore, B., Ruiz-Schultz, N., Ritchie, G. R. & Eilbeck, Ok. Improving the Sequence Ontology terminology for genomic variant annotation. J. Biomed. Semant. 6, 32 (2015).

    Article 

    Google Scholar
     

  • Cingolani, P. et al. A program for annotating and predicting the consequences of single nucleotide polymorphisms, SnpEff: SNPs within the genome of Drosophila melanogaster pressure w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwaig, M. et al. Linked-read based mostly evaluation of the medulloblastoma genome. Front. Oncol. 13, 1221611 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klever, M.-Ok. et al. AML with advanced karyotype: excessive genomic complexity revealed by mixed long-read sequencing and Hi-C know-how. Blood Adv. 7, 6520–6531 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greer, S. U. et al. Implementation of Nanopore sequencing as a realistic workflow for copy quantity variant affirmation within the clinic. J. Transl. Med. 21, 378 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gladysheva-Azgari, M. et al. A de novo genome meeting of cultivated Prunus persica cv. ‘Sovetskiy’. PLoS ONE 17, e0269284 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, C.-M., Feng, X.-Y., Huang, Y.-W. & Chen, R.-A. The purposes of nanopore sequencing know-how in animal and human virus analysis. Viruses 16, 798 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elrick, H. et al. SAVANA: dependable evaluation of somatic structural variants and duplicate quantity aberrations utilizing long-read sequencing. Nat. Methods 22, 1436–1446 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keskus, A. G. et al. Severus detects somatic structural variation and complicated rearrangements in most cancers genomes utilizing long-read sequencing. Nat. Biotechnol. (2025).

  • Liu, L. et al. Performance of somatic structural variant calling in lung most cancers utilizing Oxford Nanopore sequencing know-how. BMC Genomics 25, 898 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cameron, D. L., Di Stefano, L. & Papenfuss, A. T. Comprehensive analysis and characterisation of quick learn general-purpose structural variant calling software program. Nat. Commun. 10, 3240 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosugi, S. et al. Comprehensive analysis of structural variation detection algorithms for complete genome sequencing. Genome Biol. 20, 117 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alioto, T. S. et al. A complete evaluation of somatic mutation detection in most cancers utilizing whole-genome sequencing. Nat. Commun. 6, 10001 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ewing, A. D. et al. Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat. Methods 12, 623–630 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuenca-Guardiola, J. et al. Detection and annotation of transposable aspect insertions and deletions on the human genome utilizing nanopore sequencing. iScience 26, 108214 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, L. et al. Long-read sequencing identifies novel structural variations in colorectal most cancers. PLoS Genet. 19, e1010514 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z., Xie, Z. & Li, M. Comprehensive and deep analysis of structural variation detection pipelines with third-generation sequencing knowledge. Genome Biol. 25, 188 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quan, C., Lu, H., Lu, Y. & Zhou, G. Population-scale genotyping of structural variation within the period of long-read sequencing. Comput. Struct. Biotechnol. J. 20, 2639–2647 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aganezov, S. et al. An entire reference genome improves evaluation of human genetic variation. Science 376, eabl3533 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: public archive of relationships amongst sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Karczewski, Ok. J. et al. The mutational constraint spectrum quantified from variation in 141,456 people. Nature 581, 434–443 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, P., Li, L., Jiang, X. & Li, Q. Mismatch restore deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J. Hematol. Oncol. 12, 54 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornish, A. J. et al. The genomic panorama of two,023 colorectal cancers. Nature 633, 127–136 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41596-025-01270-5
    and if you wish to take away this text from our website please contact us

    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago