Categories: Lifestyle

Lifestyle data-based multiclass weight problems prediction with interpretable ensemble fashions incorporating SHAP and LIME evaluation

This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-20936-4
and if you wish to take away this text from our website please contact us


  • World Health Organization. Obesity and chubby, 1 March 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. [Accessed 5 April 2024].

  • Yao, Z. et al. Associations between class I, II, or III weight problems and well being outcomes. NEJM Evidence, 4 (4), EVIDoa2400229 (2025).

  • Ferreras, A. et al. and I. d. l. T. Díez. Systematic assessment of machine studying utilized to the prediction of weight problems and chubby, J. Med. Syst. 47 (8), (2023).

  • DeGregory, Okay. W. et al. Rev. Mach. Learn. Obes. Obesity Reviews, 19, 5, 668–685, (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ganie, S. M., Pramanik, P. Okay. D., Mallik, S. & Zhao, Z. Chronic kidney illness prediction utilizing boosting strategies primarily based on medical parameters. PLoS ONE. 18 (12), e0295234 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rautiainen, I. & Äyrämö, S. Predicting chubby and weight problems in later life from childhood information: A assessment of predictive modeling approaches. In Computational Sciences and Artificial Intelligence in Industry. Intelligent Systems, Control and Automation: Science and Engineering Vol. 76 (eds Tuovinen, T. et al.) 203–220 (Springer, 2022).


    Google Scholar
     

  • Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W. & Shapi’i, A. A scientific literature assessment on weight problems: Understanding the causes & penalties of weight problems and reviewing varied machine studying approaches used to foretell weight problems. Comput. Biol. Med. 136, 104754 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ganie, S. M., Pramanik, P. Okay. D., Malik, M. B., Mallik, S. & Qin, H. An ensemble studying strategy for diabetes prediction utilizing boosting strategies. Frontiers Genetics, 14, (2023).

  • Ganie, S. M., Pramanik, P. Okay. D., Malik, M. B., Nayyar, A. & Kwak, Okay. S. An improved ensemble studying strategy for coronary heart illness prediction utilizing boosting algorithms. Comput. Syst. Sci. Eng. 46 (3), 3993–4006 (2023).

    Article 

    Google Scholar
     

  • Ganie, S. M., Pramanik, P. Okay. D. & Zhao, Z. Ensemble studying with explainable AI for improved coronary heart illness prediction primarily based on a number of datasets. Sci. Rep. 15, 13912 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mienye, I. D. & Sun, Y. A survey of ensemble studying: Concepts, Algorithms, Applications, and prospects. IEEE Access. 10, 99129–99149 (2022).

    Article 

    Google Scholar
     

  • Ganie, S. M. & Pramanik, P. Okay. D. A comparative evaluation of boosting algorithms for power liver, Healthcare Analytics, 5 (100313), (2024).

  • Ganie, S. M. & Pramanik, P. Okay. D. Interpretable lung most cancers danger prediction utilizing ensemble studying and XAI primarily based on way of life and demographic information. Comput. Biol. Chem. 117, 108438 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta, R. R., Mukherjee, I. & Chakraborty, C. Obesity illness danger prediction utilizing machine studying. Int. J. Data Sci. Analytics, 19, 709–718 (2025).

    Article 

    Google Scholar
     

  • Osadchiy, V. et al. Machine studying mannequin to foretell weight problems utilizing intestine metabolite and mind microstructure information. Sci. Rep. 13, 5488 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, R., Kumar, R. & Gupta, M. Predicting danger of weight problems and meal planning to scale back the overweight in maturity utilizing synthetic intelligence, Endocrine, 78, 458–469, (2022).

  • Ferdowsy, F., Rahi, Okay. S. A., Jabiullah, M. I. & Habib, M. T. A machine studying strategy for weight problems danger prediction. Current Res. Behav. Sci. 2 (100053), (2021).

  • Maria, A. S., Sunder, R. & Kumar, R. S. Obesity Risk Prediction Using Machine Learning Approach, in International Conference on Networking and Communications (ICNWC), Chennai, India, (2023).

  • Jindal, Okay., Baliyan, N. & Rana, P. S. Obesity prediction utilizing ensemble machine studying approaches. In Recent Findings Intel. Comput. Tech. Adv. Intel. Syst. Comput. (eds.,). 708 355–362 (Springer, 2018).

  • Khodadadi, N., Saber, M. & Abotaleb, M. A Data-Driven strategy for weight problems classification utilizing machine studying. J. Artif. Intell. Metaheuristics. 3 (2), 08–17 (2023).

    Article 

    Google Scholar
     

  • Bag, H. G. G. et al. Estimation of Obesity Levels via the Proposed Predictive Approach Based on Physical Activity and Nutritional Habits, Diagnostics, 13 (18), 2949, (2023).

  • Singh, B. & Tawfik, H. Machine studying strategy for the early prediction of the danger of chubby and weight problems in younger folks. In Computational Science (ICCS 2020). Lecture Notes in Computer Science Vol. 12140 (eds Krzhizhanovskaya, V. V. et al.) 523–535 (Springer, 2020).


    Google Scholar
     

  • Lim, H., Lee, H. & Kim, J. A prediction mannequin for childhood weight problems danger utilizing the machine studying methodology: a panel examine on Korean youngsters, Scientific Reports, 13 (10122), (2023).

  • Thamrin, S. A., Arsyad, D. S., Kuswanto, H., Lawi, A. & Nasir, S. Predicting weight problems in adults utilizing machine studying strategies: an evaluation of Indonesian primary well being analysis 2018. Frontiers Nutrition, 8, 669155 (2021).

  • Pang, X., Forrest, C. B., Lê-Scherban, F. & Masino, A. J. Prediction of early childhood weight problems with machine studying and digital well being file information. International J. Med. Informatics, 150 (104454), (2021).

  • Jeon, J., Lee, S. & Oh, C. Age-specific danger elements for the prediction of weight problems utilizing a machine studying strategy. Front. Public. Health. 10, 998782 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Khater, T., Tawfik, H. & Singh, B. Machine Learning for the Classification of Obesity Levels Based on Lifestyle Factors, in seventh Inter. Conference on Cloud and Big Data Comput. Manc. UK, (2023).

  • Rodríguez, E., Rodrígueza, E., Nascimento, L., Silvaa, A. & Marins, F. Machine studying strategies to foretell chubby or weight problems, in 4th International Conference on Informatics & Data-Driven Medicine, Valencia, Spain, (2021).

  • Jeon, S., Kim, M., Yoon, J., Lee, S. & Youm, S. Machine learning-based weight problems classification contemplating 3D physique scanner measurements. Sci. Rep. 13, 3299 (2023). (Article quantity.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suresh, C. et al. Obesity Prediction Based on Daily Lifestyle Habits and Other Factors Using Different Machine Learning Algorithms, in Proceedings of Second International Conference on Advances in Computer Engineering and Communication Systems. Algorithms for Intelligent Systems, A. B. Reddy, B. Kiranmayee, R. Mukkamala and Okay. Srujan Raju, Eds., Springer, Singapore, pp. 397–407. (2022).

  • Diayasa, I. G. S. M., Idhom, M., Fauzi, A. & Damaliana, A. T. Stacking Ensemble Methods to Predict Obesity Levels in Adults, in eighth Information Technology International Seminar (ITIS), Surabaya, Indonesia, (2022).

  • Solomon, D. D. et al. Hybrid Majority Voting: Prediction and Classification Model for Obesity, Diagnostics, 13 (15), 2610, (2023).

  • Choudhuri, A. A hybrid machine studying mannequin for Estimation of weight problems ranges. In Data Management, Analytics and Innovation. ICDMAI 2022. Lecture Notes on Data Engineering and Communications Technologies Vol. 137 (eds Goswami, S. et al.) 315–329 (Springer, 2023).


    Google Scholar
     

  • Ganie, S. M., Reddy, B. B., Hemachandran, Okay. & Rege, M. An investigation of ensemble studying strategies for weight problems danger prediction utilizing way of life information. Decis. Analytics J. 14, 100539 (2025).

    Article 

    Google Scholar
     

  • Lin, W., Shi, S., Huang, H., Wen, J. & Chen, G. Predicting danger of weight problems in chubby adults utilizing interpretable machine studying algorithms. Frontiers Endocrinology, 14, (2023).

  • Zhou, Z. H. Ensemble Methods: Foundations and Algorithms (Chapman & Hall/CRC, 2012).

  • Sarmah, U., Borah, P. & Bhattacharyya, D. Okay. Ensemble studying strategies: an empirical examine. SN Comput. Sci. 5, 924 (2024).

    Article 

    Google Scholar
     

  • Liu, Z. Ensemble studying. In Artificial Intelligence for Engineers 221–242 (Springer, 2025).

    Chapter 

    Google Scholar
     

  • Freund, Y. & Schapire, R. E. A Decision-Theoretic generalization of On-Line studying and an software to boosting. J. Comput. Syst. Sci. 55 (1), 119–139 (1997).

    Article 
    MathSciNet 

    Google Scholar
     

  • Breiman, L. Bagging predictors. Maching Learn. 24, 123–140 (1996).

    Article 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45 (1), 5–32 (2001).

    Article 

    Google Scholar
     

  • Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized bushes. Mach. Learn. 63, 3–42 (2006).

    Article 

    Google Scholar
     

  • Zhao, C. et al. EnhanceTree and BoostForest for ensemble studying. IEEE Trans. Pattern Anal. Mach. Intell. 45 (7), 8110–8126 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • Aziz, N. et al. A examine on gradient boosting algorithms for improvement of AI monitoring and prediction methods, in Inter. Confer. Comput. Intel. (ICCI), Malaysia, (2020).

  • Chen, T. & Guestrin, C. XGBoost: A scalable and transportable parallel tree boosting framework, in twenty second ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, SanFrancisco, USA, (2016).

  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. CatBoost: A strong and environment friendly categorical characteristic boosting resolution tree, Advances in Neural Infor. Proc. Syst. (NeurIPS 2018), 31, 6237–6249, (2018).

  • Ke, G. et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree, Advances in Neural Information Processing Systems (NIPS 2017), 30, 3146–3154, (2017).

  • Freund, Y. & Schapire, R. E. AShort introduction to boosting. J. Japanese Soc. Artif. Intell. 14 (5), 771–780 (1999).


    Google Scholar
     

  • Zhang, Y., Zhang, H., Cai, J. & Yang, B. A Weighted voting classifier primarily based on differential evolution, Abstract and Applied Analysis, 2014, 376950, 2014. (2014).

  • Giraud-Carrier, C. Combining Base-Learners into ensembles. In Metalearning. Cognitive Technologies (eds. Brazdil, P., Jan N. van Rijn, Soares, C., Vanschoren, J.) 169–188 (Springer, 2022).

  • Ganie, S. M., Pramanik, P. Okay. D. & Zhao, Z. Enhanced and interpretable prediction of a number of most cancers varieties utilizing a stacking ensemble strategy with SHAP Analysis, Bioengineering, 15, 472, (2025).

  • Hastie, T., Tibshirani, R. & Friedman, J. The parts of statistical studying: information mining, inference, and prediction (Springer-, 2009).

  • Cover, T. & Hart, P. E. Nearest neighbor sample classification. IEEE Trans. Inf. Theory. 13 (1), 21–27 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Murtagh, F. Multilayer perceptrons for classification and regression, Neurocomputing, 2 (5–6), 183–197, (1991).

  • McCallum, A. & Nigam, Okay. A comparability of occasion fashions for naive bayes textual content classification, AAAI-98 workshop on studying for textual content categorization, 752 (1), 41–48, (1998).

  • Schapire, R. E. & Singer, Y. Improved boosting algorithms utilizing Confidence-rated predictions. Mach. Learn. 37, 297–336 (1999).

    Article 

    Google Scholar
     

  • Palechor, F. M. & Manotas, A. Dataset for estimation of weight problems ranges primarily based on consuming habits and bodily situation in people from Colombia, Peru and Mexico, Data in Brief, 25 (104344), (2019).

  • Hodges, J. L. Jr. & Lehmann, E. L. Rank strategies for mixture of impartial experiments in evaluation of variance. In Selected Works of E. L. Lehmann. Selected Works in Probability and Statistics (ed. Rojo, J.) 403–418 (Springer, 2012).

    Chapter 

    Google Scholar
     

  • Holm, S. A easy sequentially rejective a number of check process. Scand. J. Stat. 6 (2), 65–70 (1979).

    MathSciNet 

    Google Scholar
     

  • Nauta, M. et al. From anecdotal proof to quantitative analysis strategies: a scientific assessment on evaluating explainable AI, ACM Comput. Surveys, 55 (13s), 1–42, (2023).

  • Lundberg, S. M. & Lee, S. I. A unified strategy to decoding mannequin predictions, in thirty first Inter. Conf. Neural Infor. Proc. Syst. (NIPS’17), Long Beach, California, (2017).

  • Ribeiro, M. T., Singh, S. & Guestrin, C. Why Should I Trust You? Explaining the Predictions of Any Classifier, in twenty second ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ‘16), San Francisco, California, (2016).


  • This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41598-025-20936-4
    and if you wish to take away this text from our website please contact us

    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    3 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    3 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    3 days ago