This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41587-025-02867-7
and if you wish to take away this text from our web site please contact us
Cho, J. S., Kim, G. B., Eun, H., Moon, C. W. & Lee, S. Y. Designing microbial cell factories for the manufacturing of chemical compounds. JACS Au 2, 1781–1799 (2022).
Cravens, A., Payne, J. & Smolke, C. D. Synthetic biology methods for microbial biosynthesis of plant pure merchandise. Nat. Commun. 10, 2142 (2019).
Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to light up the specialised chemistry of life. Nat. Rev. Genet. 22, 553–571 (2021).
Zhang, J. J., Tang, X. & Moore, B. S. Genetic platforms for heterologous expression of microbial pure merchandise. Nat. Prod. Rep. 36, 1313–1332 (2019).
Opgenorth, P. et al. Lessons from two design–construct–take a look at–be taught cycles of dodecanol manufacturing in Escherichia coli aided by machine studying. ACS Synth. Biol. 8, 1337–1351 (2019).
Choi, Ok. R. et al. Systems metabolic engineering methods: integrating programs and artificial biology with metabolic engineering. Trends Biotechnol. 37, 817–837 (2019).
Ko, Y.-S. et al. Tools and techniques of programs metabolic engineering for the event of microbial cell factories for chemical manufacturing. Chem. Soc. Rev. 49, 4615–4636 (2020).
Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for figuring out gene knockout methods for microbial pressure optimization. Biotechnol. Bioeng. 84, 647–657 (2003).
Fong, S. S. et al. In silico design and adaptive evolution of Escherichia coli for manufacturing of lactic acid. Biotechnol. Bioeng. 91, 643–648 (2005).
Alper, H., Jin, Y.-S., Moxley, J. F. & Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7, 155–164 (2005).
Jantama, Ok. et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99, 1140–1153 (2008).
Otero, J. M. et al. Industrial programs biology of Saccharomyces cerevisiae allows novel succinic acid cell manufacturing facility. PLoS ONE 8, e54144 (2013).
Klamt, S. & Mahadevan, R. On the feasibility of growth-coupled product synthesis in microbial strains. Metab. Eng. 30, 166–178 (2015).
von Kamp, A. & Klamt, S. Growth-coupled overproduction is possible for nearly all metabolites in 5 main manufacturing organisms. Nat. Commun. 8, 15956 (2017).
Banerjee, D. et al. Genome-scale metabolic rewiring improves titers charges and yields of the non-native product indigoidine at scale. Nat. Commun. 11, 5385 (2020).
Yim, H. et al. Metabolic engineering of Escherichia coli for direct manufacturing of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011).
Dinh, H. V., King, Z. A., Palsson, B. O. & Feist, A. M. Identification of growth-coupled manufacturing strains contemplating protein prices and kinetic variability. Metab. Eng. Commun. 7, e00080 (2018).
Cicchillo, R. M. et al. An uncommon carbon–carbon bond cleavage response throughout phosphinothricin biosynthesis. Nature 459, 871–874 (2009).
Patteson, J. B. et al. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 374, 1005–1009 (2021).
Hagel, J. & Facchini, P. Biochemistry and incidence of O-demethylation in plant metabolism. Front. Physiol. (2010).
Augustin, M. M., Augustin, J. M., Brock, J. R. & Kutchan, T. M. Enzyme morphinan N-demethylase for extra sustainable opiate processing. Nat. Sustain. 2, 465–474 (2019).
Soohoo, A. M., Cogan, D. P., Brodsky, Ok. L. & Khosla, C. Structure and mechanisms of assembly-line polyketide synthases. Annu. Rev. Biochem. 93, 471–498 (2024).
Chen, F. Y.-H., Jung, H.-W., Tsuei, C.-Y. & Liao, J. C. Converting Escherichia coli to an artificial methylotroph rising solely on methanol. Cell 182, 933–946.e14 (2020).
Kim, S. et al. Growth of E. coli on formate and methanol through the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).
Jiang, W. et al. Metabolic engineering methods to allow microbial utilization of C1 feedstocks. Nat. Chem. Biol. 17, 845–855 (2021).
Figon, F. & Casas, J. Ommochromes in invertebrates: biochemistry and cell biology. Biol. Rev. 94, 156–183 (2019).
Kumar, A., Williams, T. L., Martin, C. A., Figueroa-Navedo, A. M. & Deravi, L. F. Xanthommatin-based electrochromic shows impressed by nature. ACS Appl. Mater. Interfaces 10, 43177–43183 (2018).
Martin, C. L. et al. Color-changing paints enabled by photoresponsive mixtures of bio-inspired colorants and semiconductors. Adv. Sci. 10, 2302652 (2023).
Sullivan, P. A., Wilson, D. J., Vallon, M., Bower, D. Q. & Deravi, L. F. Inkjet printing bio-inspired electrochromic pixels. Adv. Mater. Interfaces 10, 2202463 (2023).
Wilson, D. J., Martín-Martínez, F. J. & Deravi, L. F. Wearable gentle sensors primarily based on distinctive options of a pure biochrome. ACS Sens 7, 523–533 (2022).
Martin, C. A. et al. Biomimetic colorants and coatings designed with cephalopod-inspired nanocomposites. ACS Appl. Bio Mater. 4, 507–513 (2021).
A. Martin, C. et al. A bioinspired, photostable UV-filter that protects mammalian cells towards UV-induced mobile injury. Chem. Commun. 55, 12036–12039 (2019).
Deravi, L. F., Cui, I. & Martin, C. A. Using cephalopod-inspired chemistry to increase long-wavelength ultraviolet and visual gentle safety of mineral sunscreens. Int. J. Cosmet. Sci. 46, 941–948 (2024).
Riou, M. & Christidès, J.-P. Cryptic coloration change in a crab spider (Misumena vatia): identification and quantification of precursors and ommochrome pigments by HPLC. J. Chem. Ecol. 36, 412–423 (2010).
Williams, T. L. et al. Dynamic pigmentary and structural coloration inside cephalopod chromatophore organs. Nat. Commun. 10, 1004 (2019).
Figon, F. et al. Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. Insect Biochem. Mol. Biol. 124, 103403 (2020).
Forman, Ok. A. & Thulin, C. D. Ommochrome wing pigments within the monarch butterfly Danaus plexippus (Lepidoptera: Nymphalidae). J. Insect Sci. 22, 12 (2022).
Huang, G., Song, L., Du, X., Huang, X. & Wei, F. Evolutionary genomics of camouflage innovation within the orchid mantis. Nat. Commun. 14, 4821 (2023).
Butenandt, A., Schiedt, U. & Biekert, E. Über ommochrome, III. Synthese des xanthommatins. J. Liebigs Ann. Chem. 588, 106–116 (1954).
Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a useful chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155 (2018).
Turlin, J., Dronsella, B., De Maria, A., Lindner, S. N. & Nikel, P. I. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes artificial formate assimilation. Metab. Eng. 74, 191–205 (2022).
Buchanan, J. L., Rauckhorst, A. J. & Taylor, E. B. 3-hydroxykynurenine is a ROS-inducing cytotoxic tryptophan metabolite that disrupts the TCA cycle. Preprint at bioRxiv (2023).
Lewis-Luján, L. M. et al. Inhibition of pathogenic micro organism and fungi by pure phenoxazinone from octopus ommochrome pigments. J. Microbiol. Biotechnol. 32, 989–1002 (2022).
Kurnasov, O. et al. Aerobic tryptophan degradation pathway in micro organism: novel kynurenine formamidase. FEMS Microbiol. Lett. 227, 219–227 (2003).
Kurnasov, O. et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in micro organism. Chem. Biol. 10, 1195–1204 (2003).
Matthijs, S. et al. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol. Microbiol. 52, 371–384 (2004).
Le Roes-Hill, M., Goodwin, C. & Burton, S. Phenoxazinone synthase: what’s in a reputation? Trends Biotechnol. 27, 248–258 (2009).
Hughes, M. A., Baggs, M. J., al-Dulayymi, J., Baird, M. S. & Williams, P. A. Accumulation of 2-aminophenoxazin-3-one-7-carboxylate throughout development of Pseudomonas putida TW3 on 4-nitro-substituted substrates requires 4-hydroxylaminobenzoate lyase (PnbB). Appl. Environ. Microbiol. 68, 4965–4970 (2002).
Yue, S.-J. et al. Synthesis of cinnabarinic acid by metabolically engineered Pseudomonas chlororaphis GP72. Biotechnol. Bioeng. 116, 3072–3083 (2019).
Christen, S., Southwell-Keely, P. T. & Stocker, R. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase. Biochemistry 31, 8090–8097 (1992).
Martínez-García, E., Nikel, P. I., Aparicio, T. & de Lorenzo, V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Fact. 13, 159 (2014).
Yishai, O., Goldbach, L., Tenenboim, H., Lindner, S. N. & Bar-Even, A. Engineered assimilation of exogenous and endogenous formate in Escherichia coli. ACS Synth. Biol. 6, 1722–1731 (2017).
Marx, C. J., Laukel, M., Vorholt, J. A. & Lidstrom, M. E. Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic development. J. Bacteriol. 185, 7169–7175 (2003).
Nogales, J. et al. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ. Microbiol. 22, 255–269 (2020).
Alter, T. B. & Ebert, B. E. Determination of growth-coupling methods and their underlying ideas. BMC Bioinformatics 20, 447 (2019).
Alter, T. B. et al. Metabolic growth-coupling methods for in vivo enzyme choice programs. Metab. Eng. Commun. 20, e00257 (2025).
Claassens, N. J. et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab. Eng. 62, 30–41 (2020).
Wirth, N. T., Kozaeva, E. & Nikel, P. I. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR–Cas9 counterselection. Microb. Biotechnol. 13, 233–249 (2020).
Volke, D. C., Friis, L., Wirth, N. T., Turlin, J. & Nikel, P. I. Synthetic management of plasmid replication allows target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab. Eng. Commun. 10, e00126 (2020).
Volke, D. C., Wirth, N. T. & Nikel, P. I. Rapid genome engineering of Pseudomonas assisted by fluorescent markers and tractable curing of plasmids. Bio Protoc. 11, e3917 (2021).
Hartmans, S., Smits, J. P., van der Werf, M. J., Volkering, F. & de Bont, J. A. M. Metabolism of styrene oxide and 2-phenylethanol within the styrene-degrading Xanthobacter pressure 124X. Appl. Environ. Microbiol. 55, 2850–2855 (1989).
Matthijs, S. et al. Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium exercise. Environ. Microbiol. 9, 425–434 (2007).
Farrow, J. M. & Pesci, E. C. Two distinct pathways provide anthranilate as a precursor of the Pseudomonas quinolone sign. J. Bacteriol. 189, 3425–3433 (2007).
Sazinas, P., Hansen, M. L., Aune, M. I., Fischer, M. H. & Jelsbak, L. A uncommon thioquinolobactin siderophore current in a bioactive Pseudomonas sp. DTU12.1. Genome Biol. Evol. 11, 3529–3533 (2019).
Lane, M. C., Alteri, C. J., Smith, S. N. & Mobley, H. L. T. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the higher urinary tract. Proc. Natl Acad. Sci. USA 104, 16669–16674 (2007).
Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. & Feist, A. M. The emergence of adaptive laboratory evolution as an environment friendly instrument for organic discovery and industrial biotechnology. Metab. Eng. 56, 1–16 (2019).
Guzmán, G. I. et al. Enzyme promiscuity shapes adaptation to novel development substrates. Mol. Syst. Biol. 15, e8462 (2019).
Phaneuf, P. V., Gosting, D., Palsson, B. O. & Feist, A. M. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Res 47, D1164–D1171 (2019).
Jumper, J. et al. Highly correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Orsi, E., Claassens, N. J., Nikel, P. I. & Lindner, S. N. Growth-coupled choice of artificial modules to speed up cell manufacturing facility improvement. Nat. Commun. 12, 5295 (2021).
Femmer, C., Bechtold, M., Held, M. & Panke, S. In vivo directed enzyme evolution in nanoliter reactors with antimetabolite choice. Metab. Eng. 59, 15–23 (2020).
Luo, H. et al. Directed metabolic pathway evolution allows useful pterin-dependent aromatic-amino-acid hydroxylation in Escherichia coli. ACS Synth. Biol. 9, 494–499 (2020).
Luo, H. et al. Coupling S-adenosylmethionine–dependent methylation to development: design and makes use of. PLoS Biol. 17, e2007050 (2019).
Lin, B. et al. Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an environment friendly entire cell catalyst of penicillin G. Proc. Natl Acad. Sci. USA 112, 9855–9859 (2015).
Eggert, C., Temp, U., Dean, J. F. D. & Eriksson, Ok.-E. L. Laccase-mediated formation of the phenoxazinone by-product, cinnabarinic acid. FEBS Lett. 376, 202–206 (1995).
Gerhart, J. C. & Pardee, A. B. The enzymology of management by suggestions inhibition. J. Biol. Chem. 237, 891–896 (1962).
Lloyd, C. J. et al. The genetic foundation for adaptation of model-designed syntrophic co-cultures. PLoS Comput. Biol. 15, e1006213 (2019).
Luhavaya, H., Sigrist, R., Chekan, J. R., McKinnie, S. M. Ok. & Moore, B. S. Biosynthesis of L-4-chlorokynurenine, an antidepressant prodrug and a non-proteinogenic amino acid present in lipopeptide antibiotics. Angew. Chem. Int. Ed. Engl. 58, 8394–8399 (2019).
Walsh, C. T., Haynes, S. W. & Ames, B. D. Aminobenzoates as constructing blocks for pure product meeting traces. Nat. Prod. Rep. 29, 37–59 (2011).
Alter, T.B. Model-based simulation of growth-coupled manufacturing of xanthommatin. Zenodo (2025).
Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: constraints-based reconstruction and evaluation for Python. BMC Syst. Biol. 7, 74 (2013).
Sandberg, T. E. et al. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31, 2647–2662 (2014).
Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory advanced microbes from next-generation sequencing information utilizing breseq. Methods Mol. Biol. 1151, 165–188 (2014).
The Galaxy Community The Galaxy platform for accessible, reproducible, and collaborative information analyses: 2024 replace. Nucleic Acids Res. 52, W83–W94 (2024).
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of brief DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).
Garrison, E., Kronenberg, Z. N., Dawson, E. T., Pedersen, B. S. & Prins, P. A spectrum of free software program instruments for processing the VCF variant name format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput. Biol. 18, e1009123 (2022).
Dongol, M., El-Nahass, M. M., El-Denglawey, A., Elhady, A. F. & Abuelwafa, A. A. Optical properties of nano 5,10,15,20-tetraphenyl-21H,23H-prophyrin nickel (II) skinny movies. Curr. Appl. Phys. 12, 1178–1184 (2012).
Kutuzova, S. et al. SmartPeak automates focused and quantitative metabolomics information processing. Anal. Chem. 92, 15968–15974 (2020).
This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41587-025-02867-7
and if you wish to take away this text from our web site please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…