Categories: Science

Growth-coupled microbial biosynthesis of the animal pigment xanthommatin

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41587-025-02867-7
and if you wish to take away this text from our web site please contact us


  • Cho, J. S., Kim, G. B., Eun, H., Moon, C. W. & Lee, S. Y. Designing microbial cell factories for the manufacturing of chemical compounds. JACS Au 2, 1781–1799 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cravens, A., Payne, J. & Smolke, C. D. Synthetic biology methods for microbial biosynthesis of plant pure merchandise. Nat. Commun. 10, 2142 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to light up the specialised chemistry of life. Nat. Rev. Genet. 22, 553–571 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. J., Tang, X. & Moore, B. S. Genetic platforms for heterologous expression of microbial pure merchandise. Nat. Prod. Rep. 36, 1313–1332 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Opgenorth, P. et al. Lessons from two design–construct–take a look at–be taught cycles of dodecanol manufacturing in Escherichia coli aided by machine studying. ACS Synth. Biol. 8, 1337–1351 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Ok. R. et al. Systems metabolic engineering methods: integrating programs and artificial biology with metabolic engineering. Trends Biotechnol. 37, 817–837 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ko, Y.-S. et al. Tools and techniques of programs metabolic engineering for the event of microbial cell factories for chemical manufacturing. Chem. Soc. Rev. 49, 4615–4636 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for figuring out gene knockout methods for microbial pressure optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fong, S. S. et al. In silico design and adaptive evolution of Escherichia coli for manufacturing of lactic acid. Biotechnol. Bioeng. 91, 643–648 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alper, H., Jin, Y.-S., Moxley, J. F. & Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7, 155–164 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jantama, Ok. et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99, 1140–1153 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otero, J. M. et al. Industrial programs biology of Saccharomyces cerevisiae allows novel succinic acid cell manufacturing facility. PLoS ONE 8, e54144 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klamt, S. & Mahadevan, R. On the feasibility of growth-coupled product synthesis in microbial strains. Metab. Eng. 30, 166–178 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Kamp, A. & Klamt, S. Growth-coupled overproduction is possible for nearly all metabolites in 5 main manufacturing organisms. Nat. Commun. 8, 15956 (2017).

    Article 

    Google Scholar
     

  • Banerjee, D. et al. Genome-scale metabolic rewiring improves titers charges and yields of the non-native product indigoidine at scale. Nat. Commun. 11, 5385 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yim, H. et al. Metabolic engineering of Escherichia coli for direct manufacturing of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dinh, H. V., King, Z. A., Palsson, B. O. & Feist, A. M. Identification of growth-coupled manufacturing strains contemplating protein prices and kinetic variability. Metab. Eng. Commun. 7, e00080 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cicchillo, R. M. et al. An uncommon carbon–carbon bond cleavage response throughout phosphinothricin biosynthesis. Nature 459, 871–874 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patteson, J. B. et al. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 374, 1005–1009 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagel, J. & Facchini, P. Biochemistry and incidence of O-demethylation in plant metabolism. Front. Physiol. (2010).

  • Augustin, M. M., Augustin, J. M., Brock, J. R. & Kutchan, T. M. Enzyme morphinan N-demethylase for extra sustainable opiate processing. Nat. Sustain. 2, 465–474 (2019).

    Article 

    Google Scholar
     

  • Soohoo, A. M., Cogan, D. P., Brodsky, Ok. L. & Khosla, C. Structure and mechanisms of assembly-line polyketide synthases. Annu. Rev. Biochem. 93, 471–498 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F. Y.-H., Jung, H.-W., Tsuei, C.-Y. & Liao, J. C. Converting Escherichia coli to an artificial methylotroph rising solely on methanol. Cell 182, 933–946.e14 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. et al. Growth of E. coli on formate and methanol through the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Metabolic engineering methods to allow microbial utilization of C1 feedstocks. Nat. Chem. Biol. 17, 845–855 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Figon, F. & Casas, J. Ommochromes in invertebrates: biochemistry and cell biology. Biol. Rev. 94, 156–183 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, A., Williams, T. L., Martin, C. A., Figueroa-Navedo, A. M. & Deravi, L. F. Xanthommatin-based electrochromic shows impressed by nature. ACS Appl. Mater. Interfaces 10, 43177–43183 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, C. L. et al. Color-changing paints enabled by photoresponsive mixtures of bio-inspired colorants and semiconductors. Adv. Sci. 10, 2302652 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sullivan, P. A., Wilson, D. J., Vallon, M., Bower, D. Q. & Deravi, L. F. Inkjet printing bio-inspired electrochromic pixels. Adv. Mater. Interfaces 10, 2202463 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, D. J., Martín-Martínez, F. J. & Deravi, L. F. Wearable gentle sensors primarily based on distinctive options of a pure biochrome. ACS Sens 7, 523–533 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, C. A. et al. Biomimetic colorants and coatings designed with cephalopod-inspired nanocomposites. ACS Appl. Bio Mater. 4, 507–513 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • A. Martin, C. et al. A bioinspired, photostable UV-filter that protects mammalian cells towards UV-induced mobile injury. Chem. Commun. 55, 12036–12039 (2019).

    Article 

    Google Scholar
     

  • Deravi, L. F., Cui, I. & Martin, C. A. Using cephalopod-inspired chemistry to increase long-wavelength ultraviolet and visual gentle safety of mineral sunscreens. Int. J. Cosmet. Sci. 46, 941–948 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riou, M. & Christidès, J.-P. Cryptic coloration change in a crab spider (Misumena vatia): identification and quantification of precursors and ommochrome pigments by HPLC. J. Chem. Ecol. 36, 412–423 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, T. L. et al. Dynamic pigmentary and structural coloration inside cephalopod chromatophore organs. Nat. Commun. 10, 1004 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Figon, F. et al. Uncyclized xanthommatin is a key ommochrome intermediate in invertebrate coloration. Insect Biochem. Mol. Biol. 124, 103403 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forman, Ok. A. & Thulin, C. D. Ommochrome wing pigments within the monarch butterfly Danaus plexippus (Lepidoptera: Nymphalidae). J. Insect Sci. 22, 12 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, G., Song, L., Du, X., Huang, X. & Wei, F. Evolutionary genomics of camouflage innovation within the orchid mantis. Nat. Commun. 14, 4821 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butenandt, A., Schiedt, U. & Biekert, E. Über ommochrome, III. Synthese des xanthommatins. J. Liebigs Ann. Chem. 588, 106–116 (1954).

    Article 
    CAS 

    Google Scholar
     

  • Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a useful chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turlin, J., Dronsella, B., De Maria, A., Lindner, S. N. & Nikel, P. I. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes artificial formate assimilation. Metab. Eng. 74, 191–205 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchanan, J. L., Rauckhorst, A. J. & Taylor, E. B. 3-hydroxykynurenine is a ROS-inducing cytotoxic tryptophan metabolite that disrupts the TCA cycle. Preprint at bioRxiv (2023).

  • Lewis-Luján, L. M. et al. Inhibition of pathogenic micro organism and fungi by pure phenoxazinone from octopus ommochrome pigments. J. Microbiol. Biotechnol. 32, 989–1002 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurnasov, O. et al. Aerobic tryptophan degradation pathway in micro organism: novel kynurenine formamidase. FEMS Microbiol. Lett. 227, 219–227 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurnasov, O. et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in micro organism. Chem. Biol. 10, 1195–1204 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthijs, S. et al. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol. Microbiol. 52, 371–384 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Roes-Hill, M., Goodwin, C. & Burton, S. Phenoxazinone synthase: what’s in a reputation? Trends Biotechnol. 27, 248–258 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hughes, M. A., Baggs, M. J., al-Dulayymi, J., Baird, M. S. & Williams, P. A. Accumulation of 2-aminophenoxazin-3-one-7-carboxylate throughout development of Pseudomonas putida TW3 on 4-nitro-substituted substrates requires 4-hydroxylaminobenzoate lyase (PnbB). Appl. Environ. Microbiol. 68, 4965–4970 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, S.-J. et al. Synthesis of cinnabarinic acid by metabolically engineered Pseudomonas chlororaphis GP72. Biotechnol. Bioeng. 116, 3072–3083 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christen, S., Southwell-Keely, P. T. & Stocker, R. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase. Biochemistry 31, 8090–8097 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-García, E., Nikel, P. I., Aparicio, T. & de Lorenzo, V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Fact. 13, 159 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yishai, O., Goldbach, L., Tenenboim, H., Lindner, S. N. & Bar-Even, A. Engineered assimilation of exogenous and endogenous formate in Escherichia coli. ACS Synth. Biol. 6, 1722–1731 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marx, C. J., Laukel, M., Vorholt, J. A. & Lidstrom, M. E. Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic development. J. Bacteriol. 185, 7169–7175 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogales, J. et al. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ. Microbiol. 22, 255–269 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alter, T. B. & Ebert, B. E. Determination of growth-coupling methods and their underlying ideas. BMC Bioinformatics 20, 447 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alter, T. B. et al. Metabolic growth-coupling methods for in vivo enzyme choice programs. Metab. Eng. Commun. 20, e00257 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claassens, N. J. et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab. Eng. 62, 30–41 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wirth, N. T., Kozaeva, E. & Nikel, P. I. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR–Cas9 counterselection. Microb. Biotechnol. 13, 233–249 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volke, D. C., Friis, L., Wirth, N. T., Turlin, J. & Nikel, P. I. Synthetic management of plasmid replication allows target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab. Eng. Commun. 10, e00126 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volke, D. C., Wirth, N. T. & Nikel, P. I. Rapid genome engineering of Pseudomonas assisted by fluorescent markers and tractable curing of plasmids. Bio Protoc. 11, e3917 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartmans, S., Smits, J. P., van der Werf, M. J., Volkering, F. & de Bont, J. A. M. Metabolism of styrene oxide and 2-phenylethanol within the styrene-degrading Xanthobacter pressure 124X. Appl. Environ. Microbiol. 55, 2850–2855 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthijs, S. et al. Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium exercise. Environ. Microbiol. 9, 425–434 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farrow, J. M. & Pesci, E. C. Two distinct pathways provide anthranilate as a precursor of the Pseudomonas quinolone sign. J. Bacteriol. 189, 3425–3433 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sazinas, P., Hansen, M. L., Aune, M. I., Fischer, M. H. & Jelsbak, L. A uncommon thioquinolobactin siderophore current in a bioactive Pseudomonas sp. DTU12.1. Genome Biol. Evol. 11, 3529–3533 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lane, M. C., Alteri, C. J., Smith, S. N. & Mobley, H. L. T. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the higher urinary tract. Proc. Natl Acad. Sci. USA 104, 16669–16674 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. & Feist, A. M. The emergence of adaptive laboratory evolution as an environment friendly instrument for organic discovery and industrial biotechnology. Metab. Eng. 56, 1–16 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guzmán, G. I. et al. Enzyme promiscuity shapes adaptation to novel development substrates. Mol. Syst. Biol. 15, e8462 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phaneuf, P. V., Gosting, D., Palsson, B. O. & Feist, A. M. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Res 47, D1164–D1171 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orsi, E., Claassens, N. J., Nikel, P. I. & Lindner, S. N. Growth-coupled choice of artificial modules to speed up cell manufacturing facility improvement. Nat. Commun. 12, 5295 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Femmer, C., Bechtold, M., Held, M. & Panke, S. In vivo directed enzyme evolution in nanoliter reactors with antimetabolite choice. Metab. Eng. 59, 15–23 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, H. et al. Directed metabolic pathway evolution allows useful pterin-dependent aromatic-amino-acid hydroxylation in Escherichia coli. ACS Synth. Biol. 9, 494–499 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, H. et al. Coupling S-adenosylmethionine–dependent methylation to development: design and makes use of. PLoS Biol. 17, e2007050 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, B. et al. Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an environment friendly entire cell catalyst of penicillin G. Proc. Natl Acad. Sci. USA 112, 9855–9859 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggert, C., Temp, U., Dean, J. F. D. & Eriksson, Ok.-E. L. Laccase-mediated formation of the phenoxazinone by-product, cinnabarinic acid. FEBS Lett. 376, 202–206 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerhart, J. C. & Pardee, A. B. The enzymology of management by suggestions inhibition. J. Biol. Chem. 237, 891–896 (1962).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd, C. J. et al. The genetic foundation for adaptation of model-designed syntrophic co-cultures. PLoS Comput. Biol. 15, e1006213 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luhavaya, H., Sigrist, R., Chekan, J. R., McKinnie, S. M. Ok. & Moore, B. S. Biosynthesis of L-4-chlorokynurenine, an antidepressant prodrug and a non-proteinogenic amino acid present in lipopeptide antibiotics. Angew. Chem. Int. Ed. Engl. 58, 8394–8399 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, C. T., Haynes, S. W. & Ames, B. D. Aminobenzoates as constructing blocks for pure product meeting traces. Nat. Prod. Rep. 29, 37–59 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Alter, T.B. Model-based simulation of growth-coupled manufacturing of xanthommatin. Zenodo (2025).

  • Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: constraints-based reconstruction and evaluation for Python. BMC Syst. Biol. 7, 74 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandberg, T. E. et al. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31, 2647–2662 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory advanced microbes from next-generation sequencing information utilizing breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Galaxy Community The Galaxy platform for accessible, reproducible, and collaborative information analyses: 2024 replace. Nucleic Acids Res. 52, W83–W94 (2024).

    Article 

    Google Scholar
     

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of brief DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrison, E., Kronenberg, Z. N., Dawson, E. T., Pedersen, B. S. & Prins, P. A spectrum of free software program instruments for processing the VCF variant name format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput. Biol. 18, e1009123 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dongol, M., El-Nahass, M. M., El-Denglawey, A., Elhady, A. F. & Abuelwafa, A. A. Optical properties of nano 5,10,15,20-tetraphenyl-21H,23H-prophyrin nickel (II) skinny movies. Curr. Appl. Phys. 12, 1178–1184 (2012).

    Article 

    Google Scholar
     

  • Kutuzova, S. et al. SmartPeak automates focused and quantitative metabolomics information processing. Anal. Chem. 92, 15968–15974 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41587-025-02867-7
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    3 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    3 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    3 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    3 days ago