This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09696-3
and if you wish to take away this text from our website please contact us
Bozsoki, Z. et al. Ligand-recognizing motifs in plant LysM receptors are main determinants of specificity. Science 369, 663–670 (2020).
Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).
Shiu, S. H. & Bleecker, A. B. Receptor-like kinases from Arabidopsiskind a monophyletic gene household associated to animal receptor kinases. Proc. Natl Acad. Sci. USA 98, 10763–10768 (2001).
Zipfel, C. & Oldroyd, G. E. Plant signalling in symbiosis and immunity. Nature 543, 328–336 (2017).
Ngou, B. P. M., Wyler, M., Schmid, M. W., Kadota, Y. & Shirasu, Okay. Evolutionary trajectory of sample recognition receptors in vegetation. Nat. Commun. 15, 308 (2024).
Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023).
Ma, Y. et al. Comparisons of two receptor–MAPK pathways in a single cell-type reveal mechanisms of signalling specificity. Nat. Plants 10, 1343–1362 (2024).
Bozsoki, Z. et al. Receptor-mediated chitin notion in legume roots is functionally separable from Nod issue notion. Proc. Natl Acad. Sci. USA 114, E8118–E8127 (2017).
Miya, A. et al. CERK1, a LysM receptor kinase, is important for chitin elicitor signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 19613–19618 (2007).
Wang, G. et al. Release of a ubiquitin brake prompts OsCERK1-triggered immunity in rice. Nature 629, 1158–1164 (2024).
Zhang, X. W. et al. The receptor kinase CERK1 has twin capabilities in symbiosis and immunity signalling. Plant J. 81, 258–267 (2015).
Zhang, J. et al. A receptor required for chitin notion facilitates arbuscular mycorrhizal associations and distinguishes root symbiosis from immunity. Curr. Biol. 34, 1705–1717 (2024).
Han, R. C. et al. Wild species rice OsCERK1DY-mediated arbuscular mycorrhiza symbiosis boosts yield and nutrient use effectivity in rice breeding. Mol. Breed. 44, 22 (2024).
Miyata, Okay., et al. OsCERK2/OsRLK10, a homolog of OsCERK1, has a possible position for chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Biotechnol. 39, 119–128 (2022).
Feng, F. et al. A mixture of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat. Commun. 10, 5047 (2019).
Liao, D. H., Sun, X., Wang, N., Song, F. M. & Liang, Y. Tomato LysM receptor-like kinase SlLYK12 is concerned in arbuscular mycorrhizal symbiosis. Front. Plant. Sci. 9, 1004 (2018).
Limpens, E. et al. LysM area receptor kinases regulating rhizobial Nod factor-induced an infection. Science 302, 630–633 (2003).
Radutoiu, S. et al. Plant recognition of symbiotic micro organism requires two LysM receptor-like kinases. Nature 425, 585–592 (2003).
Frank, M. et al. Single-cell evaluation identifies genes facilitating rhizobium an infection in Lotus japonicus. Nat. Commun. 14, 7171 (2023).
Red Brewer, M. et al. The juxtamembrane area of the EGF receptor capabilities as an activation area. Mol. Cell 34, 641–651 (2009).
Zhou, Q. et al. The juxtamembrane domains of CERK1, BAK1, and FLS2 play a conserved position in chitin-induced signaling. J. Integr. Plant Biol. 62, 556–562 (2020).
Schauser, L., Roussis, A., Stiller, J. & Stougaard, J. A plant regulator controlling growth of symbiotic root nodules. Nature 402, 191–195 (1999).
Rübsam, H. et al. Nanobody-driven signaling reveals the core receptor advanced in root nodule symbiosis. Science 379, 272–277 (2023).
Buendia, L., Girardin, A., Wang, T., Cottret, L. & Lefebvre, B. LysM receptor-like kinase and LysM receptor-like protein households: an replace on phylogeny and useful characterization. Front. Plant Sci. 9, 1531 (2018).
Rutten, L. et al. Duplication of symbiotic lysin motif receptors predates the evolution of nitrogen-fixing nodule symbiosis. Plant Physiol. 184, 1004–1023 (2020).
Miyata, Okay. et al. The bifunctional plant receptor, OsCERK1, regulates each chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55, 1864–1872 (2014).
Li, X. et al. Atypical receptor kinase RINRK1 required for rhizobial an infection however not nodule growth in Lotus japonicus. Plant Physiol. 181, 804–816 (2019).
Liu, M., Soyano, T., Yano, Okay., Hayashi, M. & Kawaguchi, M. ERN1 and CYCLOPS coordinately activate NIN signaling to advertise an infection thread formation in Lotus japonicus. J. Plant Res. 132, 641–653 (2019).
Schiessl, Okay., et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula. Curr. Biol. 29, 3657–3668 (2019).
Lee, T. et al. Light-sensitive brief hypocotyl genes confer symbiotic nodule id within the legume Medicago truncatula. Curr. Biol. 34, 825–840 (2024).
Hohmann, U., Lau, Okay. & Hothorn, M. The structural foundation of ligand notion and sign activation by receptor kinases. Annu. Rev. Plant Biol. 68, 109–137 (2017).
Chiu, C. H. & Paszkowski, U. Receptor-like kinases maintain symbiotic scrutiny. Plant Physiol. 182, 1597–1612 (2020).
Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).
Gust, A. A., Willmann, R., Desaki, Y., Grabherr, H. M. & Nürnberger, T. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci. 17, 495–502 (2012).
Murakami, E. et al. Epidermal LysM receptor ensures sturdy symbiotic signalling in Lotus japonicus. eLife 7, e33506 (2018).
Nguyen, T. V. et al. An assemblage of Frankia Cluster II strains from California incorporates the canonical nodgenes and likewise the sulfotransferase gene nodH. BMC Genomics 17, 796 (2016).
Griesmann, M. et al. Phylogenomics reveals a number of losses of nitrogen-fixing root nodule symbiosis. Science 361, eaat1743 (2018).
Mudumbi, Okay. C. et al. Distinct interactions stabilize EGFR dimers and higher-order oligomers in cell membranes. Cell Rep. 43, 113603 (2024).
Sheetz, J. B., Lemmon, M. A. & Tsutsui, Y. Dynamics of protein kinases and pseudokinases by HDX-MS. Methods Enzymol. 667, 303–338 (2022).
Jhu, M. Y. & Oldroyd, G. E. D. Dancing to a distinct tune, can we swap from chemical to organic nitrogen fixation for sustainable meals safety? PLoS Biol. 21, e3001982 (2023).
Malolepszy, A. et al. A plant chitinase controls cortical an infection thread development and nitrogen-fixing symbiosis. eLife 7, e38874 (2018).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic native alignment search software. J. Mol. Biol. 215, 403–410 (1990).
Márquez, A. J. Lotus japonicus Handbook (Springer, 2005).
Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized meeting of multigene constructs. PLoS ONE 6, e16765 (2011).
Handberg, Okay. & Stougaard, J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 2, 487–496 (1992).
Zhukov, V. et al. The pea Sym37receptor kinase gene controls infection-thread initiation and nodule growth. Mol. Plant Microbe Interact. 21, 1600–1608 (2008).
Maekawa, T. et al. Gibberellin controls the nodulation signaling pathway in Lotus japonicus. Plant J. 58, 183–194 (2009).
Kelly, S. J. et al. Conditional requirement for exopolysaccharide within the Mesorhizobium–Lotus symbiosis. Mol. Plant Microbe Interact. 26, 319–329 (2013).
Hansen, S. B. et al. A conserved juxtamembrane motif in plant NFR5 receptors is important for root nodule symbiosis. Proc. Natl Acad. Sci. USA 121, e2405671121 (2024).
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Methods 9, 676–682 (2012).
Villanueva, R. A. M. & Chen, Z. J. ggplot2: elegant graphics for knowledge evaluation (2nd ed.). Meas. Interdiscip. Res. 17, 160–167 (2019).
Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance evaluation. J. Am. Stat. Assoc. 47, 583–621 (1952).
Dunn, O. J. Multiple comparisons utilizing rank sums. Technometrics 6, 241–252 (1964).
Girden, E. ANOVA (Sage Publications, 1992).
Tukey, J. W. Comparing particular person means within the evaluation of variance. Biometrics 5, 99–114 (1949).
Cianci, M. et al. P13, the EMBL macromolecular crystallography beamline on the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing. J. Synchrotron Radiat. 24, 323–332 (2017).
Brehm, W., Triviño, J., Krahn, J. M., Usón, I. & Diederichs, Okay. XDSGUI: a graphical person interface for XDS, SHELX and ARCIMBOLDO. J. Appl. Crystallogr. 56, 1585–1594 (2023).
Mccoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).
Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D 66, 213–221 (2010).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Features and growth of Coot. Acta Crystallogr. D 66, 486–501 (2010).
The PyMOL Molecular Graphics System v.1.8 (Schrödinger, 2015).
This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09696-3
and if you wish to take away this text from our website please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…