This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-23264-9
and if you wish to take away this text from our website please contact us
Olive, J., Behn, M. D. & Malatesta, L. C. Modes of extensional faulting managed by floor processes. 6725–6733 (2014) https://doi.org/10.1002/2014GL061507.Received.
Wolf, L., Huismans, R. S., Rouby, D., Gawthorpe, R. L. & Wolf, S. G. Links Between Faulting, Topography, and Sediment Production During Continental Rifting: Insights From Coupled Surface Process, Thermomechanical Modeling. J. Geophys. Res. Solid Earth 127, (2022).
Olive, J.-A., Malatesta, L. C., Behn, M. D. & Buck, W. R. Sensitivity of rift tectonics to world variability within the effectivity of river erosion. Proc. Natl. Acad. Sci. 119, (2022).
Cooper, C. L. et al. Is there a climatic management on Icelandic volcanism?. Quat. Sci. Adv. 1, 100004 (2020).
Hooper, A. et al. Increased seize of magma within the crust promoted by ice-cap retreat in Iceland. Nat. Geosci. 4, 783–786 (2011).
Swindles, G. T. et al. Climatic management on Icelandic volcanic exercise through the mid-Holocene. Geology 46, 47–50 (2018).
Clerc, F., Behn, M. D. & Minchew, B. M. Deglaciation-enhanced mantle CO2 fluxes at Yellowstone indicate constructive local weather suggestions. Nat. Commun. 15, 1526 (2024).
Sigmundsson, F. et al. Climate results on volcanism: affect on magmatic programs of loading and unloading from ice mass variations, with examples from Iceland. Philos. Trans. R. Soc. a-Mathematical Phys. Eng. Sci. 368, 2519–2534 (2010).
Albino, F., Pinel, V. & Sigmundsson, F. Influence of floor load variations on eruption chance: utility to 2 Icelandic subglacial volcanoes. Grimsvotn and Katla. Geophys. J. Int. 181, 1510–1524 (2010).
Rowland, J. V, Wilson, C. J. N. & Gravley, D. M. Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 190, 89–108 (2010).
Green, R. G., Greenfield, T. & White, R. S. Triggered earthquakes suppressed by an evolving stress shadow from a propagating dyke. Nat. Geosci. 8, 629–632 (2015).
RuzGinouves, J. et al. The interaction of a fault zone and a volcanic reservoir from 3D elasto-plastic fashions: Rheological situations for mutual set off primarily based on a subject case from the Andean Southern Volcanic Zone. J. Volcanol. Geotherm. Res. 418, 107317 (2021).
Rowland, J. V. et al. Fault development at a nascent slow-spreading ridge: 2005 Dabbahu rifting episode. Afar. Geophys. J. Int. 171, 1226–1246 (2007).
Farquharson, J. I. & Amelung, F. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 580, 491–495 (2020).
Crowley, J. W., Katz, R. F., Huybers, P., Langmuir, C. H. & Park, S. H. Glacial cycles drive variations within the manufacturing of oceanic crust. Science (80-. ). 347, 1237–1240 (2015).
Olive, J.-A. et al. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma provide. Science (80-. ). 350, 310–313 (2015).
Luttrell, Ok., Sandwell, D., Smith‐Konter, B., Bills, B. & Bock, Y. Modulation of the earthquake cycle on the southern San Andreas fault by lake loading. J. Geophys. Res. Solid Earth 112, (2007).
Egger, A. E. et al. Influence of pluvial lake cycles on earthquake recurrence within the northwestern Basin and Range, USA. in From Saline to Freshwater: The Diversity of Western Lakes in Space and Time 97–124 (Geological Society of America, 2021). https://doi.org/10.1130/2018.2536(07).
Xue, L., Moucha, R. & Scholz, C. A. Climate-driven stress adjustments and regular fault conduct within the Lake Malawi (Nyasa) Rift. East Africa. Earth Planet. Sci. Lett. 593, 117693 (2022).
Hampel, A. Response of faults to climate-induced adjustments of ice sheets, glaciers and lakes. Geol. Today 33, 12–18 (2017).
Ebinger, C. & Scholz, C. A. Continental rift basins: the East African perspective. Tectonics Sediment. Basins Recent Adv. 185–208 (2012).
Muirhead, J. D., Wright, L. J. M. & Scholz, C. A. Rift evolution in areas of low magma enter in East Africa. Earth Planet. Sci. Lett. 506, 332–346 (2019).
Ebinger, C. J. Tectonic improvement of the western department of the East African rift system. Geol. Soc. Am. Bull. 101, 885–903 (1989).
Scholz, C. A. et al. East African megadroughts between 135 and 75 thousand years in the past and bearing on early-modern human origins. Proc. Natl. Acad. Sci. U. S. A. 104, 16416–16421 (2007).
Morrissey, A. & Scholz, C. A. Paleohydrology of Lake Turkana and its affect on the Nile River system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 403, 88–100 (2014).
Shaban, S. N., Scholz, C. A., Muirhead, J. D. & Wood, D. A. The stratigraphic evolution of the Lake Tanganyika Rift, East Africa: Facies distributions and paleo-environmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 575, 110474 (2021).
Scholz, C. A. & Rosendahl, B. R. Low lake stands in lakes Malawi and Tanganyika, East Africa, delineated with multifold seismic information. Science (80-. ). 240, 1645–1648 (1988).
Gahalaut, V. Ok. et al. Geodetic Constraints on Tectonic and Anthropogenic Deformation and Seismogenesis of Koyna-Warna Region. India. Bull. Seismol. Soc. Am. 108, 2933–2942 (2018).
Cerling, T. E. & Powers, D. W. Paleorifting between Gregory and Ethiopian Rifts. Geology 5, 441–444 (1977).
Ebinger, C. J. et al. Rift deflection, migration, and propagation: Linkage of the Ethiopian and Eastern rifts. Africa. Geol. Soc. Am. Bull. 112, 163–176 (2000).
Morley, C. Ok. et al. Tectonic evolution of the northern Kenya Rift. J. Geol. Soc. London. 149, 333–348 (1992).
Morley, C. Ok. et al. Geology and Geophysics of the Western Turkana Basins, Kenya. in Geoscience of Rift Systems—Evolution of East Africa (ed. Morley, C. Ok.) vol. 44 19–54 (AAPG Studies in Geology, 1999).
Boone, S. C. et al. Birth of the East African Rift System: Nucleation of magmatism and pressure within the Turkana Depression. Geology 47, 886–890 (2019).
Dunkelman, T. J., Karson, J. A. & Rosendahl, B. R. Structural fashion of the Turkana Rift. Kenya. Geology 16, 258–261 (1988).
Kilembe, E. A. & Rosendahl, B. R. Structure and stratigraphy of the Rukwa Rift. Tectonophysics 209, 143–158 (1992).
Muirhead, J. D., Scholz, C. A. & O. Rooney, T. Transition to magma-driven rifting within the South Turkana Basin, Kenya: Part 1. J. Geol. Soc. London. 179, (2022).
Knappe, E. et al. Accommodation of East African Rifting Across the Turkana Depression. J. Geophys. Res. Solid Earth 125, (2020).
Shanahan, T. M. et al. The time-transgressive termination of the African Humid Period. Nat. Geosci. 8, 140–144 (2015).
Xue, L., Muirhead, J. D., Moucha, R., Wright, L. J. M. & Scholz, C. A. The Impact of Climate‐Driven Lake Level Changes on Mantle Melting in Continental Rifts. Geophys. Res. Lett. 50, (2023).
Rooney, T. O. et al. Transition to magma-driven rifting within the South Turkana Basin, Kenya: Part 2. J. Geol. Soc. London. 179, (2022).
deMenocal, P. et al. Abrupt onset and termination of the African Humid Period: Quat. Sci. Rev. 19, 347–361 (2000).
Berke, M. A. et al. Molecular information of local weather variability and vegetation response because the Late Pleistocene within the Lake Victoria basin. East Africa. Quat. Sci. Rev. 55, 59–74 (2012).
Junginger, A. & Trauth, M. H. Hydrological constraints of paleo-Lake Suguta within the Northern Kenya Rift through the African Humid Period (15–5kaBP). Glob. Planet. Change 111, 174–188 (2013).
Karp, A. T. et al. Nonlinear rainfall results on savanna hearth exercise throughout the African Humid Period. Quat. Sci. Rev. 304, 107994 (2023).
Wright, L. J. M. & Scholz, C. A. Spatio‐Temporal Variations in Sediment Delivery as a Response to Rapid Quaternary Climate Change within the Lake Malawi Rift, East Africa. J. Geophys. Res. Earth Surf. 128, (2023).
Hampel, A. et al. Postglacial slip-rate improve on the Teton regular fault, northern Basin and Range Province, attributable to melting of the Yellowstone ice cap and deglaciation of the Teton Range?. Geology 35, 1107 (2007).
Hetzel, R. & Hampel, A. Slip fee variations on regular faults throughout glacial-interglacial adjustments in floor masses. Nature 435, 81–84 (2005).
Steer, P., Simoes, M., Cattin, R. & Shyu, J. B. H. Erosion influences the seismicity of lively thrust faults. Nat. Commun. 5, 5564 (2014).
Wu, P. & Hasegawa, H. S. Induced stresses and fault potential in japanese Canada attributable to a sensible load: a preliminary evaluation. Geophys. J. Int. 127, 215–229 (1996).
Ballato, P., Brune, S. & Strecker, M. R. Sedimentary loading–unloading cycles and faulting in intermontane basins: Insights from numerical modeling and subject observations within the NW Argentine Andes. Earth Planet. Sci. Lett. 506, 388–396 (2019).
Dunkley, P., Smith, M., Allen, D. J. & Darling, W. G. The geothermal exercise and geology of the northern sector of the Kenya Rift Valley. (1993).
Wright, T. J. et al. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat. Geosci. 5, 242–250 (2012).
Roberts, N. et al. Timing of the Younger Dryas occasion in East Africa from lake degree adjustments. Nature 366, 146–148 (1993).
Benvenuti, M. et al. The Ziway–Shala lake basin (principal Ethiopian rift, Ethiopia): a revision of basin evolution with particular reference to the Late Quaternary. J. African Earth Sci. 35, 247-IN1 (2002).
Alemayehu, T., Ayenew, T. & Kebede, S. Hydrogeochemical and lake degree adjustments within the Ethiopian Rift. J. Hydrol. 316, 290–300 (2006).
Benvenuti, M., Corti, G., Keir, D. & Sani, F. Transverse tectonics management on the Late Quaternary improvement of the Central Main Ethiopian Rift. Ital. J. Geosci. 142, 42–56 (2023).
Benvenuti, M. et al. Holocene lacustrine fluctuations and deep CO2 degassing within the northeastern Lake Langano Basin (Main Ethiopian Rift). J. African Earth Sci. 77, 1–10 (2013).
Berryman, Ok. et al. Late Pleistocene floor rupture historical past of the Paeroa Fault, Taupo Rift, New Zealand. New Zeal. J. Geol. Geophys. 51, 135–158 (2008).
Villamor, P. et al. Associations between volcanic eruptions from Okataina volcanic middle and floor rupture of close by lively faults, Taupo rift, New Zealand: Insights into the character of volcano-tectonic interactions. Geol. Soc. Am. Bull. 123, 1383–1405 (2011).
Gold, R. D. & Cowgill, E. Deriving fault-slip histories to check for secular variation in slip, with examples from the Kunlun and Awatere faults. Earth Planet. Sci. Lett. 301, 52–64 (2011).
Aagaard, B. T., Knepley, M. G. & Williams, C. A. A website decomposition strategy to implementing fault slip in finite-element fashions of quasi-static and dynamic crustal deformation. J. Geophys. Res. Solid Earth 118, 3059–3079 (2013).
Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth mannequin. Phys. Earth Planet. Inter. 25, 297–356 (1981).
Hampel, A., Hetzel, R., Maniatis, G. & Karow, T. Three‐dimensional numerical modeling of slip fee variations on regular and thrust fault arrays throughout ice cap development and melting. J. Geophys. Res. Solid Earth 114, (2009).
Xue, L. et al. Seasonal Seismicity within the Lake Biwa Region of Central Japan Moderately Modulated by Lake Water Storage Changes. J. Geophys. Res. Solid Earth 126, (2021).
King, C.-Y. Earthquake mechanism and predicitability proven by a laboratory fault. Pure Appl. Geophys. 143, 457–482 (1994).
Hellebrekers, N., Niemeijer, A. R., Fagereng, Å., Manda, B. & Mvula, R. L. S. Lower crustal earthquakes within the East African Rift System: Insights from frictional properties of rock samples from the Malawi rift. Tectonophysics 767, 228167 (2019).
Muluneh, A. A., Kidane, T., Corti, G. & Keir, D. Constraints on fault and crustal power of the Main Ethiopian Rift from formal inversion of earthquake focal mechanism information. Tectonophysics 731–732, 172–180 (2018).
This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-23264-9
and if you wish to take away this text from our website please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…