Categories: Science

Natural hydrocarbon seepage on the Northeast Greenland continental shelf

This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s43247-025-02932-8
and if you wish to take away this text from our web site please contact us


  • Saunois, M. et al. The Global Methane Budget 2000-2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article 

    Google Scholar
     

  • Shindell, D. T. et al. Improved Attribution of Climate Forcing to Emissions. Science 326, 716–718 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Nisbet, E. G. et al. Atmospheric Methane: Comparison Between Methane’s Record in 2006-2022 and During Glacial Terminations. Global Biogeochem. Cy 37, 1–33 (2023).

  • Ruppel, C. D. & Kessler, J. D. The interplay of local weather change and methane hydrates. Rev. Geophysics 55, 126–168 (2017).

    Article 

    Google Scholar
     

  • Andreassen, Okay. et al. Massive blow-out craters shaped by hydrate-controlled methane expulsion from the Arctic seafloor. Science 356, 948–952 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Serov, P., Mattingsdal, R., Winsborrow, M., Patton, H. & Andreassen, Okay. Widespread pure methane and oil leakage from sub-marine Arctic reservoirs. Nat. Commun. 14, 1782 (2023).

    Article 
    CAS 

    Google Scholar
     

  • James, R. H. et al. Effects of local weather change on methane emissions from seafloor sediments within the Arctic Ocean: A assessment. Limnol. Oceanogr. 61, 283–299 (2016).

  • Etiope, G. & Schwietzke, S. Global geological methane emissions: An replace of top-down and bottom-up estimates. Elementa-Sci. Anthrop. 7, 1–9 (2019).

  • Dam, G. et al. Greenland Resource Assessment, Assessment Unit 4–North-East Greenland-Project Summary, 1–26 (Geological Survey of Denmark and Greenland, Copenhagen, 2021).

  • Hamann, N., Whittaker, R. & Stemmerik, L. Geological growth of the Northeast Greenland shelf, 1–16 (Geological Society, London, 2005).

  • Christiansen, F. G. Greenland petroleum exploration historical past: Rise and fall, learnings, and future views. Resour. Policy 74, 1–21 (2021).

  • Serov, P., Andreassen, Okay., Winsborrow, M., Mattingsdal, R. & Patton, H. Geological and glaciological controls of 21,700 energetic methane seeps within the northern Norwegian Barents sea. Front. Earth Sc.-Switz. 12, 1–20 (2024).

  • Lasabuda, A. P. E. et al. Cenozoic uplift and erosion of the Norwegian Barents Shelf-A assessment. Earth-Sci. Rev. 217, 1–35 (2021).

  • Meredith, M. et al. Polar areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, IPCC (eds Pörtner H.-O. et al.). Cambridge University Press (2019).

  • Fyhn, M. B. W. & Hopper, J. R. NE Greenland Composite Tectono-Sedimentary Element, northern Greenland Sea and Fram Strait. Geological Society, London, Memoirs 57, M57-2017-2012 (2024).

  • Christiansen, F., Dam, G., Piasecki, S., Stemmerik, L. & Spencer, A. A assessment of Upper Palaeozoic and Mesozoic supply rocks from onshore East Greenland. Gener., Accumul. Prod. Eur.’s. hydrocarbons II Spec. Publ. Eur. Assoc. Pet. Geoscientists 2, 151–161 (1992).


    Google Scholar
     

  • Reynolds, P. et al. Hydrothermal vent complexes offshore Northeast Greenland: A possible function in driving the PETM. Earth Planet. Sci. Lett. 467, 72–78 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Piepjohn, Okay., von Gosen, W. & Tessensohn, F. The Eurekan deformation within the Arctic: an overview. J. Geol. Soc. 173, 1007–1024 (2016).

    Article 

    Google Scholar
     

  • Arndt, J. E. et al. A brand new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and different processes. Geochem Geophy Geosy 16, 3733–3753 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fyhn, M. B. W. et al. Three-phased newest Jurassic-Eocene rifting and gentle mid-Cenozoic compression offshore NE Greenland. Tectonophysics 815, 228990 (2021).

  • Hamann, N. E., Whittaker, R. C. & Stemmerik, L. Geological growth of the Northeast Greenland Shelf. In: Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the sixth Petroleum Geology Conference (eds Doré A. G., Vining B. A.). Geological Society of London (2005).

  • Gjelstrup, C. V. B. et al. Vertical redistribution of precept water lots on the Northeast Greenland Shelf. Nat. Commun. 13, 7660 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Willcox, E. W. et al. An Updated View of the Water Masses on the Northeast Greenland Shelf and Their Link to the Laptev Sea and Lena River. J. Geophys. Res.-Oceans 128, 1–16 (2023).

  • Schaffer, J. et al. Warm water pathways towards Nioghalvfjerdsfjorden Glacier, Northeast Greenland. J. Geophys Res-Oceans 122, 4004–4020 (2017).

    Article 

    Google Scholar
     

  • Wekerle, C. et al. Atlantic Water warming will increase soften beneath Northeast Greenland’s final floating ice tongue. Nat. Commun. 15, 1336 (2024).

    Article 
    CAS 

    Google Scholar
     

  • White, J. E. Computed Seismic Speeds and Attenuation in Rocks with Partial Gas Saturation. Geophysics 40, 224–232 (1975).

    Article 

    Google Scholar
     

  • Berndt, C. Focused fluid circulate in passive continental margins. Philos. T R. Soc. A 363, 2855–2871 (2005).

    Article 

    Google Scholar
     

  • Domenico, S. N. Effect of Brine-Gas Mixture on Velocity in an Unconsolidated Sand Reservoir. Geophysics 41, 882–894 (1976).

    Article 

    Google Scholar
     

  • Loseth, H., Gading, M. & Wensaas, L. Hydrocarbon leakage interpreted on seismic knowledge. Mar. Pet. Geol. 26, 1304–1319 (2009).

    Article 

    Google Scholar
     

  • Wiprut, D. & Zoback, M. D. Fault reactivation and fluid circulate alongside a beforehand dormant regular fault within the northern North Sea. Geology 28, 595–598 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Grollimund, B. & Zoback, M. D. Impact of glacially induced stress adjustments on fault-seal integrity offshore Norway: Reply. Aapg Bull. 89, 275–279 (2005).

    Article 

    Google Scholar
     

  • Abrams, M. A. Significance of hydrocarbon seepage relative to petroleum era and entrapment. Mar. Pet. Geol. 22, 457–477 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Egholm, D. L., Clausen, O. R., Sandiford, M., Kristensen, M. B. & Korstgård, J. A. The mechanics of clay smearing alongside faults. Geology 36, 787–790 (2008).

    Article 

    Google Scholar
     

  • Christiansen, F. G., Bojesen-Koefoed, J. A., Jensen, S. M. & Stemmerik, L. Oil seep in basement, Germania Land, North-East Greenland. Geological Survey of Greenland (1991).

  • Sahling, H. et al. Gas emissions on the continental margin west of Svalbard: mapping, sampling, and quantification. Biogeosciences 11, 6029–6046 (2014).

    Article 

    Google Scholar
     

  • von Deimling, J. S. et al. Quantification of seep-related methane gasoline emissions at Tommeliten, North Sea (vol 31, pg 867, 2011). Cont. Shelf Res 31, 1943–1943 (2011).

    Article 

    Google Scholar
     

  • Böttner, C. et al. The Enigmatic Pockmarks of the Sandy Southeastern North Sea. Geochem. Geophys. Geosys. 25, 1–20 (2024).

  • Winsborrow, M. et al. Regulation of ice stream circulate by way of subglacial formation of gasoline hydrates. Nat. Geosci. 9, 370 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Brown, C. S., Newton, A. M. W., Huuse, M. & Buckley, F. Iceberg scours, pits, and pockmarks within the North Falkland Basin. Mar. Geol. 386, 140–152 (2017).

    Article 

    Google Scholar
     

  • Geissler, W. H., Pulm, P. V., Jokat, W. & Gebhardt, A. C. Indications for the prevalence of gasoline hydrates within the Fram Strait from warmth circulate and multichannel seismic reflection knowledge. J. Geol. Res. 2014, 582424 (2014). ID.


    Google Scholar
     

  • Cofaigh, C. O. et al. Shelf-edge glaciation offshore of northeast Greenland over the last glacial most and timing of preliminary ice-sheet retreat. Quaternary Sci. Rev. 359, 1–18 (2025).

  • Rasmussen, T. L., Pearce, C., Andresen, Okay. J., Nielsen, T. & Seidenkrantz, M. S. Northeast Greenland: ice-free shelf edge at 79.4° N across the Last Glacial Maximum 25.5–17.5 ka. Boreas 51, 759–775 (2022).

    Article 

    Google Scholar
     

  • Laberg, J. S., Forwick, M. & Husum, Okay. New geophysical proof for a revised most place of a part of the NE sector of the Greenland ice sheet over the last glacial most. arktos 3, 3 (2017).

    Article 

    Google Scholar
     

  • Olsen, I. L., Rydningen, T. A., Forwick, M., Laberg, J. S. & Husum, Okay. Last glacial ice sheet dynamics offshore NE Greenland – a case research from Store Koldewey Trough. Cryosphere 14, 4475–4494 (2020).

    Article 

    Google Scholar
     

  • Ruppel, C. D. & Waite, W. F. Timescales and Processes of Methane Hydrate Formation and Breakdown, With Application to Geologic Systems. J. Geophys. Res.-Sol. Ea. 125, e2018JB016459 (2020).

  • Gu, G. S. et al. Abundant Early Palaeogene marine gasoline hydrates regardless of heat deep-ocean temperatures. Nat. Geosci. 4, 848–851 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tishchenko, P., Hensen, C., Wallmann, Okay. & Wong, C. S. Calculation of the steadiness and solubility of methane hydrate in seawater. Chem. Geol. 219, 37–52 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Pineda, O., MacDonald, I. R., Li, X. F., Jackson, C. R. & Pichel, W. G. Oil Spill Mapping and Measurement within the Gulf of Mexico With Textural Classifier Neural Network Algorithm (TCNNA). Ieee J.-Stars 6, 2517–2525 (2013).


    Google Scholar
     

  • Panieri, G. et al. An Arctic pure oil seep investigated from house to the seafloor. Sci. Total Environ. 907, 167788 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gautier, D. L. et al. Oil and gasoline useful resource potential north of the Arctic Circle. Geol. Soc. Mem. 35, 151–161 (2011).

  • Jakobsen, F. W. et al. Continental shelf glaciations off Northeast Greenland because the late Miocene. EGUsphere 2025, 1–30 (2025).


    Google Scholar
     

  • Japsen, P., Green, P. F., Bonow, J. M., Bjerager, M. & Hopper, J. R. Episodic burial and exhumation in North-East Greenland earlier than and after opening of the North-East Atlantic. Geus B 45, 1–145 (2021).

  • López-Quirós, A. et al. Retreat patterns and dynamics of the previous Norske Trough ice stream (NE Greenland): An built-in geomorphological and sedimentological strategy. Quaternary Sci. Rev. 325, 1–24 (2024).

  • Arndt, J. E., Jokat, W. & Dorschel, B. The final glaciation and deglaciation of the Northeast Greenland continental shelf revealed by hydro-acoustic knowledge. Quat. Sci. Rev. 160, 45–56 (2017).

    Article 

    Google Scholar
     

  • Knies, J. & Mann, U. Depositional setting and supply rock potential of Miocene strata from the central Fram Strait: introduction of a brand new computing software for simulating natural facies variations. Mar. Pet. Geol. 19, 811–828 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Speelman, E. N. et al. The Eocene Arctic Azolla bloom: environmental situations, productiveness and carbon drawdown. Geobiology 7, 155–170 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Cox, D. R., Huuse, M., Newton, A. M. W., Gannon, P. & Clayburn, J. Slip sliding away: Enigma of enormous sandy blocks inside a gas-bearing mass transport deposit, offshore northwestern Greenland. Aapg Bull. 104, 1011–1043 (2020).

    Article 

    Google Scholar
     

  • Shedid, S. A. Vertical-horizontal permeability correlations utilizing coring knowledge. Egypt. J. Pet. 28, 97–101 (2019).

    Article 

    Google Scholar
     

  • Davies, R. J. et al. Long-distance migration and venting of methane from the bottom of the hydrate stability zone. Nat. Geosci. 17, 32–37 (2024).

  • Cartwright, J. The influence of 3D seismic knowledge on the understanding of compaction, fluid circulate and diagenesis in sedimentary basins. J. Geol. Soc. Lond. 164, 881–893 (2007).

    Article 

    Google Scholar
     

  • Aydin, A. Fractures, faults, and hydrocarbon entrapment, migration and circulate. Mar. Pet. Geol. 17, 797–814 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hooper, E. C. D. Fluid Migration Along Growth Faults in Compacting Sediments. J. Pet. Geol. 14, 161–180 (1991).

    Article 

    Google Scholar
     

  • Elger, J. et al. Submarine slope failures attributable to pipe construction formation. Nat. Commun. 9, 1–6 (2018).

  • Hornbach, M. J., Saffer, D. M. & Holbrook, W. S. Critically pressured free-gas reservoirs beneath gas-hydrate provinces. Nature 427, 142–144 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Solomon, E. A., Kastner, M., MacDonald, I. R. & Leifer, I. Considerable methane fluxes to the environment from hydrocarbon seeps within the Gulf of Mexico. Nat. Geosci. 2, 561–565 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Rehder, G., Brewer, P. W., Peltzer, E. T. & Friederich, G. Enhanced lifetime of methane bubble streams throughout the deep ocean. Geophys. Res. Lett. 29, 1–4 (2002).

  • Leifer, I., Clark, J. F. & Chen, R. F. Modifications of the native setting by pure marine hydrocarbon seeps. Geophys Res Lett. 27, 3711–3714 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Leifer, I. A Synthesis Review of Emissions and Fates for the Coal Oil Point Marine Hydrocarbon Seep Field and California Marine Seepage. Geofluids 2019, 1–49 (2019).

  • Leifer, I. & Judd, A. G. Oceanic methane layers: the hydrocarbon seep bubble deposition speculation. Terra Nova 14, 417–424 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Ferré, B. et al. Contrasting Methane Seepage Dynamics within the Hola Trough Offshore Norway: Insights From Two Different Summers. J. Geophys. Res.-Oceans 129, 1–16 (2024).

  • Sultan, N., Riboulot, V., Dupré, S., Garziglia, S. & Ker, S. The Role of Earth Tides in Reactivating Shallow Faults and Triggering Seafloor Methane Emissions. J. Geophys. Res.-Sol. Ea. 129, 1–25 (2024).

  • Ferré, B. et al. Reduced methane seepage from Arctic sediments throughout chilly bottom-water situations. Nat. Geosci. 13, 144 (2020).

    Article 

    Google Scholar
     

  • Serov, P. et al. Postglacial response of Arctic Ocean gasoline hydrates to climatic amelioration. P Natl. Acad. Sci. USA 114, 6215–6220 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Plaza-Faverola, A. et al. Role of tectonic stress in seepage evolution alongside the gasoline hydrate-charged Vestnesa Ridge, Fram Strait. Geophys Res Lett. 42, 733–742 (2015).

    Article 

    Google Scholar
     

  • Colin, F., Ker, S., Riboulot, V. & Sultan, N. Irregular BSR: Evidence of an Ongoing Reequilibrium of a Gas Hydrate System. Geophys. Res. Lett. 47, 1–10 (2020).

  • Nisbet, E. Climate Change and Methane. Nature 347, 23–23 (1990).

    Article 

    Google Scholar
     

  • Mazzini, A. et al. A climatic set off for the enormous Troll pockmark subject within the northern North Sea. Earth Planet. Sci. Lett. 464, 24–34 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tabone, I., Robinson, A., Montoya, M. & Alvarez-Solas, J. Holocene thinning in central Greenland managed by the Northeast Greenland Ice Stream. Nat. Commun. 15, 6434 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Minshull, T. A. et al. Hydrate prevalence in Europe: A assessment of accessible proof. Mar. Pet. Geol. 111, 735–764 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Berndt, C. et al. Temporal Constraints on Hydrate-Controlled Methane Seepage off Svalbard. Science 343, 284–287 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mau, S. et al. Widespread methane seepage alongside the continental margin off Svalbard – from Bjornoya to Kongsfjorden. Sci. Rep.-UK 7, 1–13 (2017).

  • Ruppel, C. D. et al. Methane seeps on the US Atlantic margin: An up to date stock and interpretative framework. Mar. Geol. 471, 107287 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Joung, D., Ruppel, C., Southon, J., Weber, T. S. & Kessler, J. D. Negligible atmospheric launch of methane from decomposing hydrates in mid-latitude oceans. Nat. Geosci. 15, 885 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kishankov, A. et al. Hydrocarbon leakage pushed by Quaternary glaciations within the Barents Sea based mostly on 2D basin and petroleum system modeling. Mar. Petrol Geol. 138, 105557 (2022).

  • Davies, J. et al. Linkages between ocean circulation and the Northeast Greenland Ice Stream within the Early Holocene. Quaternary Sci. Rev. 286, 1–19 (2022).

  • Hansen, Okay. E. et al. Deglacial to Mid Holocene environmental situations on the northeastern Greenland shelf, western Fram Strait. Quaternary Sci. Rev. 293, 1–20 (2022).

  • Römer, M., Sahling, H., Pape, T., Bohrmann, G. & Spiess, V. Quantification of gasoline bubble emissions from submarine hydrocarbon seeps on the Makran continental margin (offshore Pakistan). J. Geophys. Res.-Oceans 117, 1–19 (2012).

  • Nordam, T. et al. Fate of Dissolved Methane from Ocean Floor Seeps. Environ. Sci. Technol. 59, 8516–8526 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Griffiths, R. P., Caldwell, B. A., Cline, J. D., Broich, W. A. & Morita, R. Y. Field Observations of Methane Concentrations and Oxidation Rates within the Southeastern Bering Sea. Appl Environ. Micro. 44, 435–446 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Saunois, M. et al. Global Methane Budget 2000–2020. Earth Syst. Sci. Data Discuss. 2024, 1–147 (2024).


    Google Scholar
     

  • Boetius, A. & Wenzhöfer, F. Seafloor oxygen consumption fuelled by methane from chilly seeps. Nat. Geosci. 6, 725–734 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Biastoch, A. et al. Rising Arctic Ocean temperatures trigger gasoline hydrate destabilization and ocean acidification. Geophys. Res. Lett. 38, 1–5 (2011).

  • Pohlman, J. W. et al. Enhanced CO2-uptake at a shallow Arctic Ocean seep subject overwhelms the constructive warming potential of emitted methane. P Natl. Acad. Sci. USA 114, 5355–5360 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Åström, E. Okay. L., Sen, A., Carroll, M. L. & Carroll, J. Cold Seeps in a Warming Arctic: Insights for Benthic Ecology. Front. Mar. Sci. 7, 1–25 (2020).

  • Sibuet, M. & Olu, Okay. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at energetic and passive margins. Deep-Sea Res Pt Ii 45, 517 (1998).


    Google Scholar
     

  • Panieri, G. et al. Sanctuary for susceptible Arctic species on the Borealis Mud Volcano. Nat. Commun. 16, 504 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Steinle, L. et al. Water column methanotrophy managed by a speedy oceanographic change. Nat. Geosci. 8, 378 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Niemann, H. et al. Novel microbial communities of the Haakon Mosby mud volcano and their function as a methane sink. Nature 443, 854–858 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Torres, R. et al. GMES Sentinel-1 mission. Remote Sens Environ. 120, 9–24 (2012).

    Article 

    Google Scholar
     

  • Millinge, O., Böttner, C. & Asif, M. Deep Learning based mostly Identification of Oil-Slick Emissions within the Arctic Using Satellite SAR Data. In: NSG 2024 4th Conference on Airborne, Drone and Robotic Geophysics). European Association of Geoscientists & Engineers (2024).

  • Domenico, S. N. Elastic Properties of Unconsolidated Porous Sand Reservoirs. Geophysics 42, 1339–1368 (1977).

    Article 

    Google Scholar
     

  • Weiss, H. et al. NIGOGA-the Norwegian trade information to natural geochemical analyses. Norsk Hydro, Statoil, Geolab Nor, SINTEF Petroleum Research and the Norwegian Petroleum Directorate, 1-102 (2000).

  • Grantham, P. & Wakefield, L. Variations within the sterane carbon quantity distributions of marine supply rock derived crude oils by way of geological time. Org. Geochem. 12, 61–73 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Peters, Okay. E., Walters, C. C. & Moldowan, J. M. The biomarker information. Cambridge University Press (2005).

  • Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean Version 5.0. Sci. Data 11, 1–22 (2024).


  • This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s43247-025-02932-8
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago