Categories: Science

Controlling pyramidal nitrogen chirality by uneven organocatalysis

This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09607-6
and if you wish to take away this text from our website please contact us


  • Quasdorf, Ok. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters through enantioselective transition metallic catalysis. Chem. Rev. 117, 12564–12580 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. & Wang, P. Silicon-stereogenic monohydrosilane: synthesis and functions. Angew. Chem. Int. Ed. 61, e202205382 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Xu, L.-W., Li, L., Lai, G.-Q. & Jiang, J.-X. The latest synthesis and utility of silicon-stereogenic silanes: a renewed and vital problem in uneven synthesis. Chem. Soc. Rev. 40, 1777–1790 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grabulosa, A., Granell, J. & Muller, G. Preparation of optically pure P-stereogenic trivalent phosphorus compounds. Coord. Chem. Rev. 251, 25–90 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández, I. & Khiar, N. Recent developments within the synthesis and utilization of chiral sulfoxides. Chem. Rev. 103, 3651–3706 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Han, J., Soloshonok, V. A., Klika, Ok. D., Drabowicz, J. & Wzorek, A. Chiral sulfoxides: advances in uneven synthesis and issues with the correct willpower of the stereochemical end result. Chem. Soc. Rev. 47, 1307–1350 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, M. P., Phelps, J. M., Lennon, M. E., Yufit, D. S. & Kitching, M. O. Enantioselective synthesis of ammonium cations. Nature 597, 70–76 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Luo, Z. et al. Ionic hydrogen bond-assisted catalytic building of nitrogen stereogenic heart through formal desymmetrization of distant diols. Angew. Chem. Int. Ed. 63, e202404979 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bhadra, S. & Yamamoto, H. Catalytic uneven synthesis of N-chiral amine oxides. Angew. Chem. Int. Ed. 55, 13043–13046 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chattopadhyay, A. Ok. & Hanessian, S. Recent progress within the chemistry of daphniphyllum alkaloids. Chem. Rev. 117, 4104–4146 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, R. et al. The first direct synthesis of chiral Tröger’s bases catalyzed by chiral glucose-containing pyridinium ionic liquids. Chem. Eng. J. 316, 1026–1034 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Huang, S. et al. Organocatalytic enantioselective building of chiral azepine skeleton bearing multiple-stereogenic parts. Angew. Chem. Int. Ed. 60, 21486–21493 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, C., Sun, Y., Yang, J., Guo, H. & Zhang, J. Catalytic uneven synthesis of Tröger’s base analogues with nitrogen stereocenter. ACS Cent. Sci. 9, 64–71 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, T. et al. Immobilizing stereogenic nitrogen heart in doubly fused triarylamines by means of palladium-catalyzed uneven C−H activation/seven-membered-ring formation. ACS Catal. 13, 9688–9694 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Annunziata, R., Fornasier, R. & Montanari, F. Compounds with molecular asymmetry due solely to a tercovalent non-bridgehead nitrogen atom: optically lively N-chloro-2,2-diphenylaziridine. J. Chem. Soc. Chem. Commun. 1972, 1133–1134 (1972).

    Article 

    Google Scholar
     

  • Forni, A., Moretti, I., Prosyanik, A. V. & Torre, G. Optically lively trifluoromethylcarbinols as chiral solvating brokers for uneven transformations at a ring-nitrogen atom. J. Chem. Soc. Chem. Commun. 1981, 588–590 (1981).

    Article 

    Google Scholar
     

  • Bucciarelli, M., Forni, A., Moretti, I. & Torre, G. Optically lively trifluoromethylcarbinols as chiral solvating brokers for uneven transformations at a ring-nitrogen atom. Synthesis of optically lively N-chloroaziridines and stereochemical points of chiral solvent-aziridine solute complexes. J. Org. Chem. 48, 2640–2644 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Shustov, G. V. et al. Asymmetric nitrogen. 72. Geminal programs. 46. N-chlorooxaziridines: optical activation, absolute configuration, and chiroptical properties. J. Am. Chem. Soc. 111, 4210–4215 (1989).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Montanari, F., Moretti, I. & Torre, G. Asymmetric introduction at trivalent nitrogen. Optically lively 2-methyl-3,3-diphenyloxaziridine, a compound with molecular asymmetry due solely to the nitrogen atom. Chem. Commun. 1968, 1694–1695 (1968).


    Google Scholar
     

  • Boyd, D. R. Optically lively oxaziridines. Tetrahedron Lett. 9, 4561–4564 (1968).

    Article 

    Google Scholar
     

  • Kostyanovsky, R. G., Rudchenko, V. F., Shtamburg, V. G., Chervin, I. I. & Nasibov, S. S. Asymmetrical nonbridgehead nitrogen—XXVI. Synthesis, configurational stability, and determination of N,N-dialkoxyamines into antipodes. Tetrahedron 37, 4245–4254 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Smith, O. et al. Control of stereogenic oxygen in a helically chiral oxonium ion. Nature 615, 430–435 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Porto, C. M., de Barros, G. A., Santana, L. C., Moralles, A. C. & Morgon, N. H. Ammonia quantum tunneling in chilly rare-gas He and Ar clusters and factorial design strategy for methodology analysis. J. Mol. Model. 28, 293 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams, R. & Cairns, T. L. Attempts to organize optically lively ethyleneimine derivatives containing an uneven nitrogen atom. J. Am. Chem. Soc. 61, 2464–2467 (1939).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Dunlop, H. G. & Tucker, S. H. Attempts to organize optically lively tervalent nitrogen compounds. Part I. Syntheses of 1:9-phenylenecarbazole and derivatives. J. Chem. Soc. 1939, 1945–1956 (1939).

    Article 

    Google Scholar
     

  • Brois, S. J. Aziridines. XII. Isolation of a secure nitrogen pyramid. J. Am. Chem. Soc. 90, 508–509 (1968).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Rauk, A., Allen, L. C. & Mislow, Ok. Pyramidal inversion. Angew. Chem. Int. Ed. 9, 400–414 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Zaitseva, S. & Köhler, V. Pyramidal stereogenic nitrogen facilities (SNCs). Synthesis 57, 1237–1254 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Shtamburg, V. G. et al. Reactions of N-chloro-N-alkoxy-tert-alkylamines with isobutylene and methanol. Russ. Chem. Bull. 40, 951–954 (1991).

    Article 

    Google Scholar
     

  • Rudchenko, V. F. & Kostyanovskii, R. G. Geminal oxygen–nitrogen–halogen programs. N-halohydroxylamine derivatives. Russ. Chem. Rev. 67, 179–192 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres through an enantioconvergent catalytic SN1 response. Nature 556, 447–451 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Singh, V. Ok. et al. Taming secondary benzylic cations in catalytic uneven SN1 reactions. Science 382, 325–329 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) response. Science 363, 400–404 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lovinger, G. J., Sak, M. H. & Jacobsen, E. N. Catalysis of an SN2 pathway by geometric preorganization. Nature 632, 1052–1059 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Denmark, S. E., Kuester, W. E. & Burk, M. T. Catalytic, uneven halofunctionalization of alkenes—a vital perspective. Angew. Chem. Int. Ed. 51, 10938–10953 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Akiyama, T., Itoh, J., Yokota, Ok. & Fuchibe, Ok. Enantioselective Mannich-type response catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions through electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete area information to uneven BINOL-phosphate derived Brønsted acid and metallic catalysis: historical past and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing and metallic phosphates. Chem. Rev. 114, 9047–9153 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for uneven catalysis. Science 358, 761–764 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zhou, H. et al. Organocatalytic stereoselective cyanosilylation of small ketones. Nature 605, 84–89 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wang, M. et al. Asymmetric hydrogenation of ketimines with minimally completely different alkyl teams. Nature 631, 556–562 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).

  • Becke, A. D. Density‐purposeful thermochemistry. III. The function of actual change. J. Chem. Phys. 98, 5648–5652 (1993).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy components right into a purposeful of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density purposeful dispersion correction (DFT-D) for the 94 parts H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping perform in dispersion corrected density purposeful principle. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation mannequin based mostly on solute electron density and on a continuum mannequin of the solvent outlined by the majority dielectric fixed and atomic floor tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bickelhaupt, F. M. & Houk, Ok. N. Analyzing response charges with the distortion/interplay‐activation pressure mannequin. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Duan, M. et al. Chiral phosphoric acid catalyzed conversion of epoxides into thiiranes: mechanism, stereochemical mannequin, and new catalyst design. Angew. Chem. Int. Ed. 61, e202113204 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09607-6
    and if you wish to take away this text from our website please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago