This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41928-025-01489-w
and if you wish to take away this text from our web site please contact us
Aumentado, J. Superconducting parametric amplifiers: the cutting-edge in Josephson parametric amplifiers. IEEE Microw. Mag. 21, 45–59 (2020).
Esposito, M., Ranadive, A., Planat, L. & Roch, N. Perspective on touring wave microwave parametric amplifiers. Appl. Phys. Lett. 119, 120501 (2021).
Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).
Eichler, C., Bozyigit, D. & Wallraff, A. Characterizing quantum microwave radiation and its entanglement with superconducting qubits utilizing linear detectors. Phys. Rev. A 86, 032106 (2012).
Nakamura, Y. & Yamamoto, T. Breakthroughs in photonics 2012: breakthroughs in microwave quantum photonics in superconducting circuits. IEEE Photon. J. 5, 0701406 (2013).
Fraudet, D. et al. Direct detection of down-converted photons spontaneously produced at a single Josephson junction. Phys. Rev. Lett. 134, 013804 (2025).
Stehlik, J. et al. Fast cost sensing of a cavity-coupled double quantum dot utilizing a Josephson parametric amplifier. Phys. Rev. Appl. 4, 014018 (2015).
Krantz, P. et al. A quantum engineer’s information to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
Schaal, S. et al. Fast gate-based readout of silicon quantum dots utilizing Josephson parametric amplification. Phys. Rev. Lett. 124, 067701 (2020).
Elhomsy, V. et al. Broadband parametric amplification for multiplexed SiMOS quantum dot indicators. Preprint at (2023).
Teufel, J. D. et al. Sideband cooling of micromechanical movement to the quantum floor state. Nature 475, 359–363 (2011).
Bienfait, A. et al. Reaching the quantum restrict of sensitivity in electron spin resonance. Nat. Nanotechnol. 11, 253–257 (2016).
Smith, D. M. P., Bakker, L., Witvers, R. H., Woestenburg, B. E. M. & Palmer, Okay. D. Low noise amplifier for radio astronomy. Int. J. Microw. Wirel. Technol. 5, 453–461 (2013).
Bockstiegel, C. et al. Development of a broadband NbTiN touring wave parametric amplifier for MKID readout. J. Low Temp. Phys. 176, 476–482 (2014).
Jeong, J. et al. Search for invisible axion darkish matter with a multiple-cell haloscope. Phys. Rev. Lett. 125, 221302 (2020).
Braine, T. et al. Extended seek for the invisible axion with the axion darkish matter experiment. Phys. Rev. Lett. 124, 101303 (2020).
Grenet, T. et al. The Grenoble Axion Haloscope platform (GrAHal): growth plan and first outcomes. Preprint at (2021).
The MADMAX Collaboration. Simulating MADMAX in 3D: necessities for dielectric axion haloscopes. J. Cosmol. Astropart. Phys. 2021, 034 (2021).
Di Vora, R. et al. Search for galactic axions with a touring wave parametric amplifier. Phys. Rev. D 108, 062005 (2023).
Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).
Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).
Macklin, C. et al. A close to–quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).
Malnou, M. et al. Three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise efficiency. PRX Quantum 2, 010302 (2021).
Planat, L. et al. Photonic-crystal Josephson traveling-wave parametric amplifier. Phys. Rev. X 10, 021021 (2020).
Ranadive, A. et al. Kerr reversal in Josephson meta-material and touring wave parametric amplification. Nat. Commun. 13, 1737 (2022).
Fadavi Roudsari, A. et al. Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters. Appl. Phys. Lett. 122, 052601 (2023).
Kamal, A., Clarke, J. & Devoret, M. H. Noiseless non-reciprocity in a parametric lively machine. Nat. Phys. 7, 311–315 (2011).
Abdo, B., Sliwa, Okay., Frunzio, L. & Devoret, M. Directional amplification with a Josephson circuit. Phys. Rev. X 3, 031001 (2013).
Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification by way of reservoir engineering. Phys. Rev. X 5, 021025 (2015).
Sliwa, Okay. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).
Lecocq, F. et al. Nonreciprocal microwave sign processing with a field-programmable Josephson amplifier. Phys. Rev. Appl. 7, 024028 (2017).
Ranzani, L. et al. Wideband isolation by frequency conversion in a Josephson-junction transmission line. Phys. Rev. Appl. 8, 054035 (2017).
Chapman, B. J. et al. Widely tunable on-chip microwave circulator for superconducting quantum circuits. Phys. Rev. X 7, 041043 (2017).
Zhang, D. & Tsai, Jaw-Shen Magnetic-free traveling-wave nonreciprocal superconducting microwave elements. Phys. Rev. Appl. 15, 064013 (2021).
Beck, M. A., Selvanayagam, M., Carniol, A., Cairns, S. & Mancini, C. P. Wideband Josephson parametric isolator. Phys. Rev. Appl. 20, 034054 (2023).
Kwende, R., White, T. & Naaman, O. Josephson parametric circulator with same-frequency sign ports, 200 MHz bandwidth, and excessive dynamic vary. Appl. Phys. Lett. 122, 224001 (2023).
Ramos, T., Gómez-León, Á., García-Ripoll, J. J., González-Tudela, A. & Porras, D. Directional Josephson traveling-wave parametric amplifier by way of non-Hermitian topology. Preprint at (2022).
Naghiloo, M., Peng, Okay., Ye, Y., Cunningham, G. & O’Brien, Okay. P. Broadband microwave isolation with adiabatic mode conversion in coupled superconducting transmission traces. Preprint at (2021).
Ranzani, L. & Aumentado, José A geometrical description of nonreciprocity in coupled two-mode programs. New J. Phys. 16, 103027 (2014).
Frattini, N. E. et al. 3-wave mixing Josephson dipole component. Appl. Phys. Lett. 110, 222603 (2017).
Frattini, N. E., Sivak, V. V., Lingenfelter, A., Shankar, S. & Devoret, M. H. Optimizing the nonlinearity and dissipation of a SNAIL parametric amplifier for dynamic vary. Phys. Rev. Appl. 10, 054020 (2018).
Esposito, M. et al. Observation of two-mode squeezing in a touring wave parametric amplifier. Phys. Rev. Lett. 128, 153603 (2022).
Zorin, A. B. Quasi-phasematching in a poled Josephson traveling-wave parametric amplifier with three-wave mixing. Appl. Phys. Lett. 118, 222601 (2021).
Levochkina, A. Y. et al. Investigating pump harmonics technology in a SNAIL-based touring wave parametric amplifier. Supercond. Sci. Technol. 37, 115021 (2024).
Planat, L. et al. Fabrication and characterization of aluminum SQUID transmission traces. Phys. Rev. Appl. 12, 064017 (2019).
Ranadive, A. Nonlinear Quantum Optics with Josephson Meta-Materials. PhD thesis, Univ. Grenoble Alpes (2023).
Whiteley, S. R. Josephson junctions in SPICE3. IEEE Trans. Magn. 27, 2902–2905 (1991).
Ranzani, L., Spietz, L., Popovic, Z. & Aumentado, José Two-port microwave calibration at millikelvin temperatures. Rev. Sci. Instrum. 84, 034704 (2013).
Ranzani, L. et al. Kinetic inductance traveling-wave amplifiers for multiplexed qubit readout. Appl. Phys. Lett. 113, 242602 (2018).
Babenko, A. A. et al. Cryogenic decade-passband superconducting built-in diplexer. In Proc. IEEE/MTT-S International Microwave Symposium 156–159 (IEEE, 2022).
Zorin, A. B. Josephson traveling-wave parametric amplifier with three-wave mixing. Phys. Rev. Appl. 6, 034006 (2016).
This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41928-025-01489-w
and if you wish to take away this text from our web site please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…