This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41467-025-65628-9
and if you wish to take away this text from our web site please contact us
Ryan, J. F. & Chiodin, M. Where is my thoughts? How sponges and placozoans might have misplaced neural cell varieties. Philos. Trans. Royal Soc. B: Biol. Sci. 370, 20150059 (2015).
Moroz, L. L. Convergent evolution of neural methods in ctenophores. J. Exp. Biol. 218, 598–611 (2015).
Jákely, G., Paps, J. & Nielsen, C. The phylogenetic place of ctenophores and the origin(s) of nervous methods. Evodevo 6, 1 (2015).
Lacalli, T. C. The emergence of the chordate physique plan: Some puzzles and issues. Acta Zool. 91, 4–10 (2010).
Northcutt, R. G. Evolution of centralized nervous methods: Two colleges of evolutionary thought. Proc. Natl. Acad. Sci. 109, 10626–10633 (2012).
Gattoni, G., Keitley, D., Sawle, A. & Benito-Gutiérrez, E. An historic gene regulatory community units the place of the forebrain in chordates. Sci. Adv. 11, eadq4731 (2025).
Holland, L. Z. et al. Evolution of bilaterian central nervous methods: A single origin? Evodevo 4, 1–20 (2013).
Pani, A. M. et al. Ancient deuterostome origins of vertebrate mind signalling centres. Nature 483, 289–294 (2012).
Holland, N. D. Early central nervous system evolution: An period of pores and skin brains? Nat. Rev. Neurosci. 4, 617–627 (2003).
Lacalli, T. An evolutionary perspective on chordate mind group and performance: insights from amphioxus, and the issue of sentience. Philos. Trans. Royal Soc. B: Biol. Sci. 377, (2022).
Kawano-Yamashita, E. et al. The non-visual opsins expressed in deep mind neurons projecting to the retina in lampreys. Sci. Rep. 10, 9669 (2020).
Blackshaw, S. & Snyder, S. H. Encephalopsin: A novel mammalian extraretinal opsin discretely localized within the mind. J. Neurosci. 19, 3681–3690 (1999).
Fischer, R. M. et al. Co-Expression of VAL- and TMT-Opsins uncovers historic photosensory interneurons and motorneurons within the vertebrate mind. PLoS Biol. 11, (2013).
Zhang, Ok. X. et al. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 585, 420–425 (2020).
Yamashita, T. et al. Opn5 is a UV-sensitive bistable pigment that {couples} with Gi subtype of G protein. Proc. Natl. Acad. Sci. USA 107, 22084–22089 (2010).
Yamashita, T. et al. Evolution of mammalian Opn5 as a specialised UV-absorbing pigment by a single amino acid mutation. J. Biol. Chem. 289, 3991–4000 (2014).
Nakane, Y. et al. A mammalian neural tissue opsin (Opsin 5) is a deep mind photoreceptor in birds. Proc. Natl. Acad. Sci. USA 107, 15264–15268 (2010).
Miyamoto, N., Nakajima, Y., Wada, H. & Saito, Y. Development of the nervous system within the acorn worm Balanoglossus simodensis: Insights into nervous system evolution. Evol. Dev. 12, 416–424 (2010).
Nakajima, Y., Humphreys, T., Kaneko, H. & Tagawa, Ok. Development and neural group of the tornaria larva of the Hawaiian hemichordate, Ptychodera flava. Zool. Sci. 21, 69–78 (2004).
Angerer, L. M., Yaguchi, S., Angerer, R. C. & Burke, R. D. The evolution of nervous system patterning: Insights from sea urchin improvement. Development 138, (2011).
Formery, L. et al. Molecular proof of anteroposterior patterning in grownup echinoderms. Nature 623, 555–561 (2023).
Wei, Z., Yaguchi, J., Yaguchi, S., Angerer, R. C. & Angerer, L. M. The sea urchin animal pole area is a Six3-dependent neurogenic patterning heart. Development 136, 1179–1189 (2009).
Burke, R. D. et al. A genomic view of the ocean urchin nervous system. Dev. Biol. 300, 434–460 (2006).
Range, R. C. & Wei, Z. An anterior signaling heart patterns and sizes the anterior neuroectoderm of the ocean urchin embryo. Dev. (Camb.) 143, 1523–1533 (2016).
Khadka, A., Martínez-Bartolomé, M., Burr, S. D. & Range, R. C. A novel gene’s position in an historic mechanism: Secreted Frizzled-related protein 1 is a important part within the anterior-posterior Wnt signaling community that governs the institution of the anterior neuroectoderm in sea urchin embryos. Evodevo 9, 1–15 (2018).
Cheatle Jarvela, A. M., Yankura, Ok. A. & Hinman, V. F. A gene regulatory community for apical organ neurogenesis and its spatial management in sea star embryos. Development 143, 4214–4223 (2016).
Yaguchi, J. & Yaguchi, S. Sea urchin larvae make the most of gentle for regulating the pyloric opening. BMC Biol. 19, 1–14 (2021).
Yaguchi, J. et al. Light-modulated neural management of sphincter regulation within the evolution of through-gut. Nat. Commun. 15, 8881 (2024).
D’Aniello, S. et al. Opsin evolution within the Ambulacraria. Mar. Genomics 24, 177–183 (2015).
Valencia, J. E., Feuda, R., Mellott, D. O., Burke, R. D. & Peter, I. S. Ciliary photoreceptors in sea urchin larvae point out pan-deuterostome cell kind conservation. BMC Biol. 19, 1–15 (2021).
Cocurullo, M., Paganos, P., Benvenuto, G. & Arnone, M. I. Characterization of thyrotropin-releasing hormone producing neurons in sea urchin, from larva to juvenile. Front Neurosci. 18, 1–20 (2024).
Yaguchi, S., Taniguchi, Y., Suzuki, H., Kamata, M. & Yaguchi, J. Planktonic sea urchin larvae change their swimming path in response to sturdy photoirradiation. PLoS Genet 18, 1–17 (2022).
Mayorova, T. D. et al. Localization of neuropeptide gene expression in larvae of an echinoderm, the starfish Asterias rubens. Front Neurosci. 10, 1–18 (2016).
Semmens, D. C. et al. Transcriptomic identification of Starfish Neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol. 6, (2016).
Yaguchi, S., Kanoh, Ok., Amemiya, S. & Katow, H. Initial evaluation of immunochemical cell floor properties, location and formation of the serotonergic apical ganglion in sea urchin embryos. Dev. Growth Differ. 42, 479–488 (2000).
Wei, Z., Angerer, R. C. & Angerer, L. M. Direct improvement of neurons inside foregut endoderm of sea urchin embryos. Proc. Natl. Acad. Sci. USA 108, 9143–9147 (2011).
Yaguchi, S. & Katow, H. Expression of tryptophan 5-hydroxylase gene throughout sea urchin neurogenesis and position of serotonergic nervous system in larval conduct. J. Comp. Neurol. 466, 219–229 (2003).
Yaguchi, J., Takeda, N., Inaba, Ok. & Yaguchi, S. Cooperative Wnt-nodal indicators regulate the patterning of anterior neuroectoderm. PLoS Genet 12, e1006001 (2016).
Wood, N. J. et al. Neuropeptidergic methods in pluteus larvae of the ocean urchin strongylocentrotus purpuratus: Neurochemical complexity in a “Simple” nervous system. Front Endocrinol. 9, 1–13 (2018).
Ramirez, M. D. et al. The final frequent ancestor of most bilaterian animals possessed not less than 9 opsins. Genome Biol. Evol. 8, 3640–3652 (2016).
Eggert, T., Hauck, B., Hildebrandt, N., Gehring, W. J. & Walldorf, U. Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its doable position in mind and eye improvement. Proc. Natl. Acad. Sci. USA 95, 2343–2348 (1998).
Cederquist, G. Y. et al. Specification of positional id in forebrain organoids. Nat. Biotechnol. 37, 436–444 (2019).
Wei, Z., Angerer, L. M. & Angerer, R. C. Neurogenic gene regulatory pathways within the sea urchin embryo. Development 143, 298–305 (2016).
Yaguchi, S., Yaguchi, J., Angerer, R. C. & Angerer, L. M. A Wnt-FoxQ2-nodal pathway hyperlinks main and secondary axis specification in sea urchin embryos. Dev. Cell 14, 97–107 (2008).
Iwai, R. et al. A Prdm8 goal gene Ebf3 regulates multipolar-to-bipolar transition in migrating neocortical cells. Biochem Biophys. Res Commun. 495, 388–394 (2018).
Wu, S.-Y. & McClay, D. R. The Snail repressor is required for PMC ingression within the sea urchin embryo. Development 134, 1061–1070 (2007).
Kobayashi, Ok., Sawada, Ok., Yamamoto, H., Wada, S. & Saiga, H. Maternal macho-1 is an intrinsic issue that makes cell response to the identical FGF sign differ between mesenchyme and notochord induction in ascidian embryos. 5179–5190 (2003).
Papadogiannis, V. et al. Hmx gene conservation identifies the origin of vertebrate cranial ganglia. Nature 605, 701–705 (2022).
Oliveri, P. et al. The Cryptochrome/Photolyase Family in aquatic organisms. Mar. Genomics 14, 23–37 (2014).
Currie, S. P., Doherty, G. H. & Sillar, Ok. T. Deep-brain photoreception hyperlinks luminance detection to motor output in Xenopus frog tadpoles. Proc. Natl. Acad. Sci. USA 113, 6053–6058 (2016).
Yaguchi, J. & Yaguchi, S. Rx and its downstream issue, Musashi1, is required for institution of the apical organ in sea urchin larvae. Front Cell Dev. Biol. 11, 1–11 (2023).
Green, S. A. & Bronner, M. E. Gene duplications and the early evolution of neural crest improvement. Semin Cell Dev. Biol. 24, 95–100 (2013).
Itoh, Y. et al. Scratch regulates neuronal migration onset by way of an epithelial-mesenchymal transition-like mechanism. Nat. Neurosci. 16, 416–425 (2013).
Anderson, R. B., Stewart, A. L. & Young, H. M. Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res. 323, 11–25 (2006).
Langeland, J. A., Tomsa, J. M., Jackman, W. R. & Kimmel, C. B. An amphioxus snail gene: Expression in paraxial mesoderm and neural plate suggests a conserved position in patterning the chordate embryo. Dev. Genes Evol. 208, 569–577 (1998).
Baker, C. V. H. & Bronner-Fraser, M. The origins of the neural crest. Part II: An evolutionary perspective. Mech. Dev. 69, 13–29 (1997).
Hardin, J. & Illingworth, C. A. A homologue of snail is expressed transiently in subsets of mesenchyme cells within the sea urchin embryo and is down-regulated in axis-deficient embryos. Dev. Dyn. 235, 3121–3131 (2006).
Wakayama, N., Katow, T. & Katow, H. Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein through the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos. Front Endocrinol. 4, 1–15 (2013).
Todorov, L. G., Oonuma, Ok., Kusakabe, T. G., Levine, M. S. & Lemaire, L. A. Neural crest lineage within the proto-vertebrate mannequin Ciona. Nature 635, 1–17 (2024).
Holland, L. Z. The origin and evolution of chordate nervous methods. Philos. Trans. Royal Soc. B: Biol. Sci. 370, 20150048 (2015).
Zhang, L. et al. Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat. Int. J. Mol. Sci. 25, 6988 (2024).
Placzek, M., Fu, T. & Towers, M. Development of the Neuroendocrine Hypothalamus. Mastercl. Neuroendocrinol. 9, 3–30 (2020).
Khuansuwan, S., Clanton, J. A., Dean, B. J., Patton, J. G. & Gamse, J. T. A transcription issue community controls cell migration and destiny choices within the creating zebrafish pineal advanced. Development 143, 2641–2650 (2016).
Fukuda, A. et al. Direct photoreception by pituitary endocrine cells regulates hormone launch and pigmentation. Science 387, 43–48 (2025).
Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridgec, J. Ok. Toward a extra complete principle of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011).
Simoncelli, S., Thackeray, S. J. & Wain, D. J. Effect of temperature on zooplankton vertical migration velocity. Hydrobiologia 829, 143–166 (2019).
Hahn, M. A., Effertz, C., Bigler, L. & Elert, E. Von. 5Α-Cyprinol Sulfate, a Bile Salt From Fish, Induces Diel Vertical Migration in Daphnia. Elife 8, 1–15 (2019).
Holland, L. Z. Evolution of basal deuterostome nervous methods. J. Exp. Biol. 218, 637–645 (2015).
Yaguchi, S. et al. Fez operate is required to keep up the dimensions of the animal plate within the sea urchin embryo. Development 138, 4233–4243 (2011).
Mellott, D. O., Thisdelle, J. & Burke, R. D. Notch signaling patterns neurogenic ectoderm and regulates the uneven division of neural progenitors in sea urchin embryos. Development 144, 3602–3611 (2017).
Beccari, L., Marco-Ferreres, R. & Bovolenta, P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech. Dev. 130, 95–111 (2013).
Peirson, S. N., Haiford, S. & Foster, R. G. The evolution of irradiance detection: Melanopsin and the non-visual opsins. Philos. Trans. R. Soc. B: Biol. Sci. 364, 2849–2865 (2009).
Massri, A. J. et al. Developmental single-cell transcriptomics within the Lytechinus variegatus sea urchin embryo. Development 148, 1–13 (2021).
Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare [version 2; peer review: 3 approved]. F1000Res 9, 1–20 (2020).
Dobin, A. et al. STAR: Ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Hao, Y. et al. Integrated evaluation of multimodal single-cell information. Cell 184, 3573–3587.e29 (2021).
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq information utilizing regularized destructive binomial regression. Genome Biol. 20, 1–15 (2019).
Tsuyuzaki, Ok., Sato, H., Sato, Ok. & Nikaido, I. Benchmarking principal part evaluation for large-scale single-cell RNA-sequencing. Genome Biol. 21, 1–17 (2020).
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3, 861 (2018).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 1–12 (2019).
Mou, T., Deng, W., Gu, F., Pawitan, Y. & Vu, T. N. Reproducibility of Methods to Detect Differentially Expressed Genes from Single-Cell RNA Sequencing. Front Genet. 10, 1–12 (2020).
Germain, P. L., Lun, A., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing information utilizing scDblFinder [version 2; peer review: 2 approved]. F1000Res 10, 979 (2021).
Erkenbrack, E. M. et al. Whole mount in situ hybridization strategies for evaluation of the spatial distribution of MRNAs in Sea Urchin Embryos and early larvae. Methods Cell Biol. 151, 177–196 (2019).
Kinjo, S., Kiyomoto, M., Yamamoto, T., Ikeo, Ok. & Yaguchi, S. HpBase: A genome database of a sea urchin, Hemicentrotus pulcherrimus. Dev. Growth Differ. 60, 174–182 (2018).
Kinjo, S., Kiyomoto, M., Yamamoto, T., Ikeo, Ok. & Yaguchi, S. Usage of the Sea Urchin Hemicentrotus Pulcherrimus Database, HpBase. Methods Mol. Biol. vol. 2219, 267–275 (2021).
Nakajima, Y., Kaneko, H., Murray, G. & Burke, R. D. Divergent patterns of neural improvement in larval echinoids and asteroids. Evol. Dev. 6, 95–104 (2004).
Takacs, C. M. et al. Expression of an NK2 homeodomain gene within the apical ectoderm defines a brand new territory within the early sea urchin embryo. Dev. Biol. 269, 152–164 (2004).
Yaguchi, S. et al. ankAT-1 is a novel gene mediating the apical tuft formation within the sea urchin embryo. Dev. Biol. 348, 67–75 (2010).
Yamazaki, A., Yamamoto, A., Yaguchi, J. & Yaguchi, S. cis-Regulatory evaluation for later section of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos. Genesis 57, e23302 (2019).
Balhoff, J. P. & Wray, G. A. Evolutionary evaluation of the nicely characterised endo16 promoter reveals substantial variation inside useful websites. Proc. Natl. Acad. Sci. USA 102, 8591–8596 (2005).
Fujiyabu, C., Sato, Ok., Ohuchi, H. & Yamashita, T. Diversification processes of teleost intron-less opsin genes. J. Biol. Chem. 299, 104899 (2023).
This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41467-025-65628-9
and if you wish to take away this text from our web site please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…