Categories: Science

Non-visual photoreceptive mind specification in sea urchin larvae

This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41467-025-65628-9
and if you wish to take away this text from our web site please contact us


  • Ryan, J. F. & Chiodin, M. Where is my thoughts? How sponges and placozoans might have misplaced neural cell varieties. Philos. Trans. Royal Soc. B: Biol. Sci. 370, 20150059 (2015).

  • Moroz, L. L. Convergent evolution of neural methods in ctenophores. J. Exp. Biol. 218, 598–611 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jákely, G., Paps, J. & Nielsen, C. The phylogenetic place of ctenophores and the origin(s) of nervous methods. Evodevo 6, 1 (2015).

    Article 

    Google Scholar
     

  • Lacalli, T. C. The emergence of the chordate physique plan: Some puzzles and issues. Acta Zool. 91, 4–10 (2010).

    Article 

    Google Scholar
     

  • Northcutt, R. G. Evolution of centralized nervous methods: Two colleges of evolutionary thought. Proc. Natl. Acad. Sci. 109, 10626–10633 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gattoni, G., Keitley, D., Sawle, A. & Benito-Gutiérrez, E. An historic gene regulatory community units the place of the forebrain in chordates. Sci. Adv. 11, eadq4731 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Holland, L. Z. et al. Evolution of bilaterian central nervous methods: A single origin? Evodevo 4, 1–20 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pani, A. M. et al. Ancient deuterostome origins of vertebrate mind signalling centres. Nature 483, 289–294 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Holland, N. D. Early central nervous system evolution: An period of pores and skin brains? Nat. Rev. Neurosci. 4, 617–627 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lacalli, T. An evolutionary perspective on chordate mind group and performance: insights from amphioxus, and the issue of sentience. Philos. Trans. Royal Soc. B: Biol. Sci. 377, (2022).

  • Kawano-Yamashita, E. et al. The non-visual opsins expressed in deep mind neurons projecting to the retina in lampreys. Sci. Rep. 10, 9669 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Blackshaw, S. & Snyder, S. H. Encephalopsin: A novel mammalian extraretinal opsin discretely localized within the mind. J. Neurosci. 19, 3681–3690 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fischer, R. M. et al. Co-Expression of VAL- and TMT-Opsins uncovers historic photosensory interneurons and motorneurons within the vertebrate mind. PLoS Biol. 11, (2013).

  • Zhang, Ok. X. et al. Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 585, 420–425 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yamashita, T. et al. Opn5 is a UV-sensitive bistable pigment that {couples} with Gi subtype of G protein. Proc. Natl. Acad. Sci. USA 107, 22084–22089 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yamashita, T. et al. Evolution of mammalian Opn5 as a specialised UV-absorbing pigment by a single amino acid mutation. J. Biol. Chem. 289, 3991–4000 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nakane, Y. et al. A mammalian neural tissue opsin (Opsin 5) is a deep mind photoreceptor in birds. Proc. Natl. Acad. Sci. USA 107, 15264–15268 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Miyamoto, N., Nakajima, Y., Wada, H. & Saito, Y. Development of the nervous system within the acorn worm Balanoglossus simodensis: Insights into nervous system evolution. Evol. Dev. 12, 416–424 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Nakajima, Y., Humphreys, T., Kaneko, H. & Tagawa, Ok. Development and neural group of the tornaria larva of the Hawaiian hemichordate, Ptychodera flava. Zool. Sci. 21, 69–78 (2004).

    Article 

    Google Scholar
     

  • Angerer, L. M., Yaguchi, S., Angerer, R. C. & Burke, R. D. The evolution of nervous system patterning: Insights from sea urchin improvement. Development 138, (2011).

  • Formery, L. et al. Molecular proof of anteroposterior patterning in grownup echinoderms. Nature 623, 555–561 (2023).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wei, Z., Yaguchi, J., Yaguchi, S., Angerer, R. C. & Angerer, L. M. The sea urchin animal pole area is a Six3-dependent neurogenic patterning heart. Development 136, 1179–1189 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Burke, R. D. et al. A genomic view of the ocean urchin nervous system. Dev. Biol. 300, 434–460 (2006).

  • Range, R. C. & Wei, Z. An anterior signaling heart patterns and sizes the anterior neuroectoderm of the ocean urchin embryo. Dev. (Camb.) 143, 1523–1533 (2016).

    CAS 

    Google Scholar
     

  • Khadka, A., Martínez-Bartolomé, M., Burr, S. D. & Range, R. C. A novel gene’s position in an historic mechanism: Secreted Frizzled-related protein 1 is a important part within the anterior-posterior Wnt signaling community that governs the institution of the anterior neuroectoderm in sea urchin embryos. Evodevo 9, 1–15 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheatle Jarvela, A. M., Yankura, Ok. A. & Hinman, V. F. A gene regulatory community for apical organ neurogenesis and its spatial management in sea star embryos. Development 143, 4214–4223 (2016).

  • Yaguchi, J. & Yaguchi, S. Sea urchin larvae make the most of gentle for regulating the pyloric opening. BMC Biol. 19, 1–14 (2021).

    Article 

    Google Scholar
     

  • Yaguchi, J. et al. Light-modulated neural management of sphincter regulation within the evolution of through-gut. Nat. Commun. 15, 8881 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • D’Aniello, S. et al. Opsin evolution within the Ambulacraria. Mar. Genomics 24, 177–183 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Valencia, J. E., Feuda, R., Mellott, D. O., Burke, R. D. & Peter, I. S. Ciliary photoreceptors in sea urchin larvae point out pan-deuterostome cell kind conservation. BMC Biol. 19, 1–15 (2021).

    Article 

    Google Scholar
     

  • Cocurullo, M., Paganos, P., Benvenuto, G. & Arnone, M. I. Characterization of thyrotropin-releasing hormone producing neurons in sea urchin, from larva to juvenile. Front Neurosci. 18, 1–20 (2024).

    Article 

    Google Scholar
     

  • Yaguchi, S., Taniguchi, Y., Suzuki, H., Kamata, M. & Yaguchi, J. Planktonic sea urchin larvae change their swimming path in response to sturdy photoirradiation. PLoS Genet 18, 1–17 (2022).

    Article 

    Google Scholar
     

  • Mayorova, T. D. et al. Localization of neuropeptide gene expression in larvae of an echinoderm, the starfish Asterias rubens. Front Neurosci. 10, 1–18 (2016).

    Article 

    Google Scholar
     

  • Semmens, D. C. et al. Transcriptomic identification of Starfish Neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol. 6, (2016).

  • Yaguchi, S., Kanoh, Ok., Amemiya, S. & Katow, H. Initial evaluation of immunochemical cell floor properties, location and formation of the serotonergic apical ganglion in sea urchin embryos. Dev. Growth Differ. 42, 479–488 (2000).

  • Wei, Z., Angerer, R. C. & Angerer, L. M. Direct improvement of neurons inside foregut endoderm of sea urchin embryos. Proc. Natl. Acad. Sci. USA 108, 9143–9147 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yaguchi, S. & Katow, H. Expression of tryptophan 5-hydroxylase gene throughout sea urchin neurogenesis and position of serotonergic nervous system in larval conduct. J. Comp. Neurol. 466, 219–229 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yaguchi, J., Takeda, N., Inaba, Ok. & Yaguchi, S. Cooperative Wnt-nodal indicators regulate the patterning of anterior neuroectoderm. PLoS Genet 12, e1006001 (2016).

  • Wood, N. J. et al. Neuropeptidergic methods in pluteus larvae of the ocean urchin strongylocentrotus purpuratus: Neurochemical complexity in a “Simple” nervous system. Front Endocrinol. 9, 1–13 (2018).

    Article 

    Google Scholar
     

  • Ramirez, M. D. et al. The final frequent ancestor of most bilaterian animals possessed not less than 9 opsins. Genome Biol. Evol. 8, 3640–3652 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Eggert, T., Hauck, B., Hildebrandt, N., Gehring, W. J. & Walldorf, U. Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its doable position in mind and eye improvement. Proc. Natl. Acad. Sci. USA 95, 2343–2348 (1998).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cederquist, G. Y. et al. Specification of positional id in forebrain organoids. Nat. Biotechnol. 37, 436–444 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wei, Z., Angerer, L. M. & Angerer, R. C. Neurogenic gene regulatory pathways within the sea urchin embryo. Development 143, 298–305 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yaguchi, S., Yaguchi, J., Angerer, R. C. & Angerer, L. M. A Wnt-FoxQ2-nodal pathway hyperlinks main and secondary axis specification in sea urchin embryos. Dev. Cell 14, 97–107 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Iwai, R. et al. A Prdm8 goal gene Ebf3 regulates multipolar-to-bipolar transition in migrating neocortical cells. Biochem Biophys. Res Commun. 495, 388–394 (2018).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu, S.-Y. & McClay, D. R. The Snail repressor is required for PMC ingression within the sea urchin embryo. Development 134, 1061–1070 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kobayashi, Ok., Sawada, Ok., Yamamoto, H., Wada, S. & Saiga, H. Maternal macho-1 is an intrinsic issue that makes cell response to the identical FGF sign differ between mesenchyme and notochord induction in ascidian embryos. 5179–5190 (2003).

  • Papadogiannis, V. et al. Hmx gene conservation identifies the origin of vertebrate cranial ganglia. Nature 605, 701–705 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Oliveri, P. et al. The Cryptochrome/Photolyase Family in aquatic organisms. Mar. Genomics 14, 23–37 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Currie, S. P., Doherty, G. H. & Sillar, Ok. T. Deep-brain photoreception hyperlinks luminance detection to motor output in Xenopus frog tadpoles. Proc. Natl. Acad. Sci. USA 113, 6053–6058 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yaguchi, J. & Yaguchi, S. Rx and its downstream issue, Musashi1, is required for institution of the apical organ in sea urchin larvae. Front Cell Dev. Biol. 11, 1–11 (2023).

    Article 

    Google Scholar
     

  • Green, S. A. & Bronner, M. E. Gene duplications and the early evolution of neural crest improvement. Semin Cell Dev. Biol. 24, 95–100 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Itoh, Y. et al. Scratch regulates neuronal migration onset by way of an epithelial-mesenchymal transition-like mechanism. Nat. Neurosci. 16, 416–425 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Anderson, R. B., Stewart, A. L. & Young, H. M. Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res. 323, 11–25 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Langeland, J. A., Tomsa, J. M., Jackman, W. R. & Kimmel, C. B. An amphioxus snail gene: Expression in paraxial mesoderm and neural plate suggests a conserved position in patterning the chordate embryo. Dev. Genes Evol. 208, 569–577 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baker, C. V. H. & Bronner-Fraser, M. The origins of the neural crest. Part II: An evolutionary perspective. Mech. Dev. 69, 13–29 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hardin, J. & Illingworth, C. A. A homologue of snail is expressed transiently in subsets of mesenchyme cells within the sea urchin embryo and is down-regulated in axis-deficient embryos. Dev. Dyn. 235, 3121–3131 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wakayama, N., Katow, T. & Katow, H. Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein through the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos. Front Endocrinol. 4, 1–15 (2013).

    Article 

    Google Scholar
     

  • Todorov, L. G., Oonuma, Ok., Kusakabe, T. G., Levine, M. S. & Lemaire, L. A. Neural crest lineage within the proto-vertebrate mannequin Ciona. Nature 635, 1–17 (2024).

    Article 

    Google Scholar
     

  • Holland, L. Z. The origin and evolution of chordate nervous methods. Philos. Trans. Royal Soc. B: Biol. Sci. 370, 20150048 (2015).

  • Zhang, L. et al. Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat. Int. J. Mol. Sci. 25, 6988 (2024).

  • Placzek, M., Fu, T. & Towers, M. Development of the Neuroendocrine Hypothalamus. Mastercl. Neuroendocrinol. 9, 3–30 (2020).

    Article 

    Google Scholar
     

  • Khuansuwan, S., Clanton, J. A., Dean, B. J., Patton, J. G. & Gamse, J. T. A transcription issue community controls cell migration and destiny choices within the creating zebrafish pineal advanced. Development 143, 2641–2650 (2016).

  • Fukuda, A. et al. Direct photoreception by pituitary endocrine cells regulates hormone launch and pigmentation. Science 387, 43–48 (2025).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridgec, J. Ok. Toward a extra complete principle of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Simoncelli, S., Thackeray, S. J. & Wain, D. J. Effect of temperature on zooplankton vertical migration velocity. Hydrobiologia 829, 143–166 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hahn, M. A., Effertz, C., Bigler, L. & Elert, E. Von. 5Α-Cyprinol Sulfate, a Bile Salt From Fish, Induces Diel Vertical Migration in Daphnia. Elife 8, 1–15 (2019).

    Article 

    Google Scholar
     

  • Holland, L. Z. Evolution of basal deuterostome nervous methods. J. Exp. Biol. 218, 637–645 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Yaguchi, S. et al. Fez operate is required to keep up the dimensions of the animal plate within the sea urchin embryo. Development 138, 4233–4243 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mellott, D. O., Thisdelle, J. & Burke, R. D. Notch signaling patterns neurogenic ectoderm and regulates the uneven division of neural progenitors in sea urchin embryos. Development 144, 3602–3611 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Beccari, L., Marco-Ferreres, R. & Bovolenta, P. The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech. Dev. 130, 95–111 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Peirson, S. N., Haiford, S. & Foster, R. G. The evolution of irradiance detection: Melanopsin and the non-visual opsins. Philos. Trans. R. Soc. B: Biol. Sci. 364, 2849–2865 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Massri, A. J. et al. Developmental single-cell transcriptomics within the Lytechinus variegatus sea urchin embryo. Development 148, 1–13 (2021).

    Article 

    Google Scholar
     

  • Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare [version 2; peer review: 3 approved]. F1000Res 9, 1–20 (2020).

  • Dobin, A. et al. STAR: Ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hao, Y. et al. Integrated evaluation of multimodal single-cell information. Cell 184, 3573–3587.e29 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq information utilizing regularized destructive binomial regression. Genome Biol. 20, 1–15 (2019).

    Article 

    Google Scholar
     

  • Tsuyuzaki, Ok., Sato, H., Sato, Ok. & Nikaido, I. Benchmarking principal part evaluation for large-scale single-cell RNA-sequencing. Genome Biol. 21, 1–17 (2020).

    Article 

    Google Scholar
     

  • McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3, 861 (2018).

    Article 

    Google Scholar
     

  • Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 1–12 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mou, T., Deng, W., Gu, F., Pawitan, Y. & Vu, T. N. Reproducibility of Methods to Detect Differentially Expressed Genes from Single-Cell RNA Sequencing. Front Genet. 10, 1–12 (2020).

    Article 

    Google Scholar
     

  • Germain, P. L., Lun, A., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing information utilizing scDblFinder [version 2; peer review: 2 approved]. F1000Res 10, 979 (2021).

  • Erkenbrack, E. M. et al. Whole mount in situ hybridization strategies for evaluation of the spatial distribution of MRNAs in Sea Urchin Embryos and early larvae. Methods Cell Biol. 151, 177–196 (2019).

  • Kinjo, S., Kiyomoto, M., Yamamoto, T., Ikeo, Ok. & Yaguchi, S. HpBase: A genome database of a sea urchin, Hemicentrotus pulcherrimus. Dev. Growth Differ. 60, 174–182 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kinjo, S., Kiyomoto, M., Yamamoto, T., Ikeo, Ok. & Yaguchi, S. Usage of the Sea Urchin Hemicentrotus Pulcherrimus Database, HpBase. Methods Mol. Biol. vol. 2219, 267–275 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nakajima, Y., Kaneko, H., Murray, G. & Burke, R. D. Divergent patterns of neural improvement in larval echinoids and asteroids. Evol. Dev. 6, 95–104 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Takacs, C. M. et al. Expression of an NK2 homeodomain gene within the apical ectoderm defines a brand new territory within the early sea urchin embryo. Dev. Biol. 269, 152–164 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yaguchi, S. et al. ankAT-1 is a novel gene mediating the apical tuft formation within the sea urchin embryo. Dev. Biol. 348, 67–75 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yamazaki, A., Yamamoto, A., Yaguchi, J. & Yaguchi, S. cis-Regulatory evaluation for later section of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos. Genesis 57, e23302 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Balhoff, J. P. & Wray, G. A. Evolutionary evaluation of the nicely characterised endo16 promoter reveals substantial variation inside useful websites. Proc. Natl. Acad. Sci. USA 102, 8591–8596 (2005).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fujiyabu, C., Sato, Ok., Ohuchi, H. & Yamashita, T. Diversification processes of teleost intron-less opsin genes. J. Biol. Chem. 299, 104899 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41467-025-65628-9
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago