This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41550-025-02713-5
and if you wish to take away this text from our website please contact us
Roth, L. et al. Transient water vapor at Europa’s South Pole. Science 343, 171–174 (2014).
Porco, C. C. et al. Cassini observes the lively South Pole of Enceladus. Science 311, 1393–1401 (2006).
Fagents, S. A., Lopes, R. M., Quick, L. C. & Gregg, T. Okay. in Planetary Volcanism throughout the Solar System (eds Gregg, T. Okay. P. et al) 161–234 (Elsevier, 2022).
Hussmann, H. & Spohn, T. Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004).
Showman, A. P., Stevenson, D. J. & Malhotra, R. Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997).
Tobie, G. et al. Tidal deformation and dissipation processes in icy worlds. Space Sci. Rev. 221, 6 (2025).
Moore, W. B. & Schubert, G. The tidal response of Europa. Icarus 147, 317–319 (2000).
Kamata, S., Matsuyama, I. & Nimmo, F. Tidal resonance in icy satellites with subsurface oceans. J. Geophys. Res. E 120, 1528–1542 (2015).
Manga, M. & Wang, C.-Y. Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett. 34, L07202 (2007).
Beuthe, M. Spatial patterns of tidal heating. Icarus 223, 308–329 (2013).
Běhounková, M., Tobie, G., Choblet, G. & Čadek, O. Tidally-induced melting occasions because the origin of South-Pole exercise on Enceladus. Icarus 219, 655–664 (2012).
Nimmo, F. Stresses generated in cooling viscoelastic ice shells: software to Europa. J. Geophys. Res. E 109, E12001 (2004).
Rudolph, M. L., Manga, M., Walker, M. & Rhoden, A. R. Cooling crusts create concomitant cryovolcanic cracks. Geophys. Res. Lett. 49, e2021GL094421 (2022).
Rhoden, A. R., Walker, M. E., Rudolph, M. L., Bland, M. T. & Manga, M. The evolution of a younger ocean inside Mimas. Earth Planet. Sci. Lett. 635, 118689 (2024).
Rhoden, A. R., Rudolph, M. L. & Manga, M. The challenges of driving Charon’s cryovolcanism from a freezing ocean. Icarus 392, 115391 (2023).
Tajeddine, R. et al. Constraints on Mimas’ inside from Cassini ISS libration measurements. Science 346, 322–324 (2014).
Lainey, V. et al. A lately fashioned ocean inside Saturn’s moon Mimas. Nature 626, 280–282 (2024).
Baillié, Okay., Noyelles, B., Lainey, V., Charnoz, S. & Tobie, G. Formation of the Cassini Division. I. Shaping the rings by Mimas inward migration. Mon. Not. R. Astron. Soc. 486, 2933–2946 (2019).
Noyelles, B., Baillié, Okay., Charnoz, S., Lainey, V. & Tobie, G. Formation of the Cassini Division. II. Possible histories of Mimas and Enceladus. Mon. Not. R. Astron. Soc. 486, 2947–2963 (2019).
Strom, C., Nordheim, T. A., Patthoff, D. A. & Fieber-Beyer, S. Okay. Constraining ocean and ice shell thickness on Miranda from floor geological buildings and stress modeling. Planet. Sci. J. 5, 226 (2024).
Hemingway, D. J. & Mittal, T. Enceladus’s ice shell construction as a window on inside warmth manufacturing. Icarus 332, 111–131 (2019).
Fuller, J., Luan, J. & Quataert, E. Resonance locking because the supply of speedy tidal migration within the Jupiter and Saturn moon techniques. Mon. Not. R. Astron. Soc. 458, 3867–3879 (2016).
Tobie, G., Čadek, O. & Sotin, C. Solid tidal friction above a liquid water reservoir because the origin of the South Pole hotspot on Enceladus. Icarus 196, 642–652 (2008).
Meyer, J. & Wisdom, J. Tidal heating in Enceladus. Icarus 188, 535–539 (2007).
McKinnon, W. B. & Schenk, P. Is Mimas hole? In Proc. AGU Fall Meeting P32A-05 (American Geophysical Union, 2024); https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1707025
McKinnon, W. B. & Schenk, P. Is Mimas a Dyson satellite tv for pc? The destiny of small melting moons. In Proc. 56th Lunar Planetary Science Conference 2897 (USRA, 2025); https://www.hou.usra.edu/meetings/lpsc2025/pdf/2897.pdf
Hemingway, D. J., Rudolph, M. L. & Manga, M. Cascading parallel fractures on Enceladus. Nat. Astron. 4, 234–239 (2020).
Arakawa, M. & Maeno, N. Mechanical energy of polycrystalline ice beneath uniaxial compression. Cold Reg. Sci. Technol. 26, 215–229 (1997).
Jones, S. J. The confined compressive energy of polycrystalline ice. J. Glaciol. 28, 171–178 (1982).
Schulson, E. M. Brittle failure of ice. Eng. Fract. Mech. 68, 1839–1887 (2001).
Potter, R. S., Cammack, J. M., Braithwaite, C. H., Church, P. D. & Walley, S. M. A research of the compressive mechanical properties of defect-free, porous and sintered water-ice at high and low pressure charges. Icarus 351, 113940 (2020).
Schulson, E. M. & Renshaw, C. E. Fracture, friction, and permeability of ice. Annu. Rev. Earth Planet. Sci. 50, 323–343 (2022).
Cochrane, C. J., Vance, S. D., Castillo-Rogez, J. C., Styczinski, M. J. & Liuzzo, L. Stronger proof of a subsurface ocean inside Callisto from a multifrequency investigation of its induced magnetic subject. AGU Adv. 6, e2024AV001237 (2025).
Nagel, Okay., Breuer, D. & Spohn, T. A mannequin for the inside construction, evolution, and differentiation of Callisto. Icarus 169, 402–412 (2004).
Hillier, J. & Squyres, S. W. Thermal stress tectonics on the satellites of Saturn and Uranus. J. Geophys. Res. E 96, 15665–15674 (1991).
Hurford, T. A., Helfenstein, P., Hoppa, G. V., Greenberg, R. & Bills, B. G. Eruptions arising from tidally managed periodic openings of rifts on Enceladus. Nature 447, 292–294 (2007).
Ingersoll, A. P. & Nakajima, M. Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks. Icarus 272, 319–326 (2016).
Zhu, P., Manucharyan, G. E., Thompson, A. F., Goodman, J. C. & Vance, S. D. The affect of meridional ice transport on Europa’s ocean stratification and warmth content material. Geophys. Res. Lett. 44, 5969–5977 (2017).
Shibley, N. C. & Laughlin, G. Do oceanic convection and clathrate dissociation drive Europa’s geysers? Planet. Sci. J. 2, 221 (2021).
Mitchell, Okay. L., Rabinovitch, J., Scamardella, J. C. & Cable, M. L. A proposed mannequin for cryovolcanic exercise on Enceladus pushed by risky exsolution. J. Geophys. Res. E 129, e2023JE007977 (2024).
Matson, D. L., Castillo-Rogez, J. C., Davies, A. G. & Johnson, T. V. Enceladus: a speculation for bringing each warmth and chemical compounds to the floor. Icarus 221, 53–62 (2012).
Crawford, G. D. & Stevenson, D. J. Gas-driven water volcanism within the resurfacing of Europa. Icarus 73, 66–79 (1988).
Rudolph, M. L. & Manga, M. Fracture penetration in planetary ice shells. Icarus 199, 536–541 (2009).
Buffo, J. J., Meyer, C. R. & Parkinson, J. R. G. Dynamics of a solidifying icy satellite tv for pc shell. J. Geophys. Res. E 126, e2020JE006741 (2021).
Buffo, J. J., Schmidt, B. E., Huber, C. & Meyer, C. R. Characterizing the ice-ocean interface of icy worlds: a theoretical strategy. Icarus 360, 114318 (2021).
Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002).
Shoji, D., Hussmann, H., Sohl, F. & Kurita, Okay. Non-steady state tidal heating of Enceladus. Icarus 235, 75–85 (2014).
Goldreich, P., Lithwick, Y. & Luan, J. Enceladus’s restrict cycle. Astrophys. J. 992, 28 (2025).
Greenberg, R. et al. in Uranus (eds Bergstralh, J. T. et al.) 693–735 (Univ. Arizona Press, 1991).
Pappalardo, R. T., Reynolds, S. J. & Greeley, R. Extensional tilt blocks on Miranda: proof for an upwelling origin of Arden Corona. J. Geophys. Res. E 102, 13369–13379 (1997).
Hammond, N. P. & Barr, A. C. Global resurfacing of Uranus’s moon Miranda by convection. Geology 42, 931–934 (2014).
Tittemore, W. C. & Wisdom, J. Tidal evolution of the Uranian satellites. II. An clarification of the anomalously excessive orbital inclination of Miranda. Icarus 78, 63–89 (1989).
Croft, S. & Soderblom, L. in Uranus (eds Bergstralh, J. T. et al.) 561–628 (Univ. Arizona Press, 1991).
Hussmann, H., Sohl, F. & Spohn, T. Subsurface oceans and deep interiors of medium-sized outer planet satellites and huge trans-Neptunian objects. Icarus 185, 258–273 (2006).
Bierson, C. J. & Nimmo, F. A notice on the potential for subsurface oceans on the Uranian satellites. Icarus 373, 114776 (2022).
Beddingfield, C. B., Leonard, E. J., Nordheim, T. A., Cartwright, R. J. & Castillo-Rogez, J. C. Titania’s warmth fluxes revealed by Messina Chasmata. Planet. Sci. J. 4, 211 (2023).
Porco, C. C. et al. Cassini imaging science: preliminary outcomes on Phoebe and Iapetus. Science 307, 1237–1242 (2005).
Giese, B. et al. The topography of Iapetus’ main facet. Icarus 193, 359–371 (2008).
Ip, W.-H. On a hoop origin of the equatorial ridge of Iapetus. Geophys. Res. Lett. (2006).
Levison, H. F., Walsh, Okay. J., Barr, A. C. & Dones, L. Ridge formation and de-spinning of Iapetus by way of an impact-generated satellite tv for pc. Icarus 214, 773–778 (2011).
Dombard, A. J., Cheng, A. F., McKinnon, W. B. & Kay, J. P. Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in an enormous influence. J. Geophys. Res. E (2012).
Detelich, C. E., Byrne, P. Okay., Dombard, A. J. & Schenk, P. M. The morphology and age of the Iapetus equatorial ridge helps an exogenic origin. Icarus 367, 114559 (2021).
Stickle, A. M. & Roberts, J. H. Modeling an exogenic origin for the equatorial ridge on Iapetus. Icarus 307, 197–206 (2018).
Sandwell, D. & Schubert, G. A contraction mannequin for the flattening and equatorial ridge of Iapetus. Icarus 210, 817–822 (2010).
Ćuk, M. et al. Long-term evolution of the Saturnian system. Space Sci. Rev. 220, 20 (2024).
Castillo-Rogez, J. C. et al. Iapetus’ geophysics: rotation price, form, and equatorial ridge. Icarus 190, 179–202 (2007).
National Academies of Sciences, Engineering, and Medicine. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 (National Academies Press, 2023).
Jaeger, J. C., Cook, N. G. & Zimmerman, R. Fundamentals of Rock Mechanics (Wiley, 2009).
Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford Univ. Press, 1999).
Rudolph, M. & Rhoden, A. PISTES: planetary ice shell thermal evolution and stress. Zenodo (2025).
Nimmo, F., Bierson, C. & McKinnon, W. B. Pluto and Triton: Interior Structures, Lithospheres and Potential for Oceans (IOP Publishing, 2025).
This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41550-025-02713-5
and if you wish to take away this text from our website please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…