Categories: Science

Enlargement of Antarctic Bottom Water pushed by Antarctic warming within the final deglaciation

This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41561-025-01853-7
and if you wish to take away this text from our web site please contact us


  • Monnin, E. et al. Atmospheric CO2 concentrations during the last glacial termination. Science 291, 112–114 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, R. F. et al. Wind-driven upwelling within the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 focus. Nature 466, 47–55 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sikes, E. L. et al. Southern Ocean glacial situations and their affect on deglacial occasions. Nat. Rev. Earth Environ. 4, 454–470 (2023).

    Article 

    Google Scholar
     

  • Marshall, J. & Speer, Okay. Closure of the meridional overturning circulation via Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Barker, S. et al. Extreme deepening of the Atlantic overturning circulation throughout deglaciation. Nat. Geosci. 3, 567–571 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Burke, A. & Robinson, L. F. The Southern Ocean’s function in carbon alternate over the last deglaciation. Science 335, 557–561 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, T. et al. Synchronous centennial abrupt occasions within the ocean and environment over the last deglaciation. Science 349, 1537–1541 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Skinner, L. C. et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ronge, T. A. et al. Radiocarbon proof for the contribution of the southern Indian Ocean to the evolution of atmospheric CO2 during the last 32,000 years. Paleoceanogr. Paleoclimatol. 35, e2019PA003733 (2020).

    Article 

    Google Scholar
     

  • Solodoch, A. et al. How does Antarctic Bottom Water cross the Southern Ocean?. Geophys. Res. Lett. 49, e2021GL097211 (2022).

    Article 

    Google Scholar
     

  • Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 within the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).

    Article 

    Google Scholar
     

  • Pöppelmeier, F. et al. Multi-proxy constraints on Atlantic circulation dynamics for the reason that final ice age. Nat. Geosci. 16, 349–356 (2023).

    Article 

    Google Scholar
     

  • Adkins, J. F. The function of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013).

    Article 

    Google Scholar
     

  • Ferrari, R. et al. Antarctic sea ice management on ocean circulation in current and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation throughout the Last Glacial Maximum. Science 316, 66–69 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Huang, H. et al. No detectable Weddell Sea Antarctic Bottom Water export over the last and penultimate glacial most. Nat. Commun. 11, 424 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Last glacial atmospheric CO2 decline because of widespread Pacific deep-water enlargement. Nat. Geosci. 13, 628–633 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Böhm, E. et al. Strong and deep Atlantic Meridional Overturning Circulation over the last glacial cycle. Nature 517, 73–76 (2015).

    Article 

    Google Scholar
     

  • Piotrowski, A. M. et al. Intensification and variability of ocean thermohaline circulation via the final deglaciation. Earth Planet. Sci. Lett. 225, 205–220 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Frank, M. Radiogenic isotopes: tracers of previous ocean circulation and erosional enter. Rev. Geophys. 40, 1001 (2002).

    Article 

    Google Scholar
     

  • Du, J. et al. Abyssal seafloor as a key driver of ocean trace-metal biogeochemical cycles. Nature 642, 620–627 (2025).

    Article 

    Google Scholar
     

  • Wang, R. et al. Boundary processes and neodymium biking alongside the Pacific margin of West Antarctica. Geochim. Cosmochim. Acta 327, 1–20 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Grenier, M. et al. Differentiating lithogenic provides, water mass transport, and organic processes on and Off the Kerguelen Plateau utilizing uncommon earth factor concentrations and neodymium isotopic compositions. Front. Mar. Sci. 5, 426 (2018).

    Article 

    Google Scholar
     

  • Basak, C. et al. Breakup of final glacial deep stratification within the South Pacific. Science 359, 900–904 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Stichel, T. et al. The hafnium and neodymium isotope composition of seawater within the Atlantic sector of the Southern Ocean. Earth Planet. Sci. Lett. 317-318, 282–294 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Assessing neodymium isotopes as an ocean circulation tracer within the southwest Atlantic. Earth Planet. Sci. Lett. 599, 117846 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, S. et al. Orbital- and millennial-scale Antarctic Circumpolar Current variability in Drake Passage over the previous 140,000 years. Nat. Commun. 12, 3948 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Williams, T. J. et al. Neodymium isotope proof for coupled Southern Ocean circulation and Antarctic local weather all through the final 118,000 years. Quat. Sci. Rev. 260, 106915 (2021).

    Article 

    Google Scholar
     

  • Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Du, J., Haley, B. A. & Mix, A. C. Evolution of the Global Overturning Circulation for the reason that Last Glacial Maximum based mostly on marine authigenic neodymium isotopes. Quat. Sci. Rev. 241, 106396 (2020).

    Article 

    Google Scholar
     

  • Lund, D. C., Adkins, J. F. & Ferrari, R. Abyssal Atlantic circulation throughout the Last Glacial Maximum: constraining the ratio between transport and vertical mixing. Paleoceanography 26, PA1213 (2011).

    Article 

    Google Scholar
     

  • Pöppelmeier, F. et al. Stable Atlantic Deep Water mass sourcing on glacial–interglacial timescales. Geophys. Res. Lett. 48, e2021GL092722 (2021).

    Article 

    Google Scholar
     

  • Jaccard, S. L. et al. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 via the final ice age. Nature 530, 207–210 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Piotrowski, A. M. et al. Reconstructing deglacial North and South Atlantic deep water sourcing utilizing foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357-358, 289–297 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Skinner, L. C. et al. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean air flow. Geology 41, 667–670 (2013).

    Article 
    CAS 

    Google Scholar
     

  • McManus, J. F. et al. Collapse and fast resumption of Atlantic meridional circulation linked to deglacial local weather modifications. Nature 428, 834–837 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, J. et al. Evolution of South Atlantic density and chemical stratification throughout the final deglaciation. Proc. Natl Acad. Sci. USA 113, 514–519 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fudge, T. J. et al. Onset of deglacial warming in West Antarctica pushed by native orbital forcing. Nature 500, 440–444 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, H. et al. Reconstruction of millennial modifications in mud emission, transport and regional sea ice protection utilizing the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth Planet. Sci. Lett. 260, 340–354 (2007).

    Article 
    CAS 

    Google Scholar
     

  • van Wijk, E. M. & Rintoul, S. R. Freshening drives contraction of Antarctic Bottom Water within the Australian Antarctic Basin. Geophys. Res. Lett. 41, 1657–1664 (2014).

    Article 

    Google Scholar
     

  • Gunn, Okay. L. et al. Recent lowered abyssal overturning and air flow within the Australian Antarctic Basin. Nat. Clim. Change 13, 537–544 (2023).

    Article 

    Google Scholar
     

  • Smith, W. O. et al. The Ross Sea in a sea of change. Oceanography 25, 90–103 (2012).

    Article 

    Google Scholar
     

  • Krueger, S. et al. North Atlantic Deep Water and Antarctic Bottom Water variability over the last 200 ka recorded in an abyssal sediment core off South Africa. Glob. Planet. Change 80-81, 180–189 (2012).

    Article 

    Google Scholar
     

  • Yu, J. et al. Deep South Atlantic carbonate chemistry and elevated interocean deep water alternate throughout final deglaciation. Quat. Sci. Rev. 90, 80–89 (2014).

    Article 

    Google Scholar
     

  • Zhang, H. et al. Indian Ocean sedimentary calcium carbonate distribution and its implications for the glacial deep ocean circulation. Quat. Sci. Rev. 284, 107490 (2022).

    Article 

    Google Scholar
     

  • Jacobel, A. W. et al. Repeated storage of respired carbon within the equatorial Pacific Ocean during the last three glacial cycles. Nat. Commun. 8, 1727 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rahlf, P. et al. Tracing water mass mixing and continental inputs within the southeastern Atlantic Ocean with dissolved neodymium isotopes. Earth Planet. Sci. Lett. 530, 115944 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schlitzer R. Ocean Data View (2011).

  • GEBCO_2020 grid. GEBCO (2020).

  • Garcia-Solsona, E. et al. Rare earth parts and Nd isotopes tracing water mass mixing and particle-seawater interactions within the SE Atlantic. Geochim. Cosmochim. Acta 125, 351–372 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Barbante, C. et al. One-to-one coupling of glacial local weather variability in Greenland and Antarctica. Nature 444, 195–198 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Brook, E. J. et al. Timing of millennial-scale local weather change at Siple Dome, West Antarctica, over the last glacial interval. Quat. Sci. Rev. 24, 1333–1343 (2005).

    Article 

    Google Scholar
     

  • Gutjahr, M. & Lippold, J. Early arrival of Southern Source Water within the deep North Atlantic previous to Heinrich occasion 2. Paleoceanography 26, PA2101 (2011).

    Article 

    Google Scholar
     

  • Lippold, J. et al. Constraining the variability of the Atlantic Meridional Overturning Circulation throughout the Holocene. Geophys. Res. Lett. 46, 11338–11346 (2019).

    Article 

    Google Scholar
     

  • Roberts, N. L. et al. Synchronous deglacial overturning and water mass supply modifications. Science 327, 75–78 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bereiter, B. et al. Revision of the EPICA Dome C CO2 file from 800 to 600 kyr earlier than current. Geophys. Res. Lett. 42, 542–549 (2015).

    Article 

    Google Scholar
     

  • Huang, H. et al. Efficient extraction of previous seawater Pb and Nd isotope signatures from Southern Ocean sediments. Geochem. Geophys. Geosyst. 22, e2020GC009287 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, F. et al. Asian mud enter within the western Philippine Sea: proof from radiogenic Sr and Nd isotopes. Geochem. Geophys. Geosyst. 14, 1538–1551 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tachikawa, Okay., Piotrowski, A. M. & Bayon, G. Neodymium related to foraminiferal carbonate as a recorder of seawater isotopic signatures. Quat. Sci. Rev. 88, 1–13 (2014).

    Article 

    Google Scholar
     

  • McLennan, S. M. in Geochemistry and Mineralogy of Rare Earth Elements (eds Lipin, B. R. & McKay, G. A.) 169–200 (De Gruyter, 1989).

  • Martin, E. E. et al. Extraction of Nd isotopes from bulk deep sea sediments for paleoceanographic research on Cenozoic time scales. Chem. Geol. 269, 414–431 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Pin, C. & Zalduegui, J. S. Sequential separation of sunshine rare-earth parts, thorium and uranium by miniaturized extraction chromatography: utility to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Vance, D. & Thirlwall, M. An evaluation of mass discrimination in MC-ICPMS utilizing Nd isotopes. Chem. Geol. 185, 227–240 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article 

    Google Scholar
     

  • Li, J. et al. Production and certification of the reference materials GSB 04-3258-2015 as a 143Nd/144Nd isotope ratio reference. Geostand. Geoanal. Res. 41, 255–262 (2017).

    Article 

    Google Scholar
     

  • Frank, M. et al. Late Quaternary sediment relationship and quantification of lateral sediment redistribution making use of 230Thex: a examine from the jap Atlantic sector of the Southern Ocean. Geol. Rundsch. 85, 554–566 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kemp, A. E. S. et al. Migration of the Antarctic Polar Front via the mid-Pleistocene transition: proof and climatic implications. Quat. Sci. Rev. 29, 1993–2009 (2010).

    Article 

    Google Scholar
     

  • Gottschalk, J. et al. Radiocarbon measurements of small-size foraminiferal samples with the Mini Carbon Dating System (MICADAS) on the University of Bern: implications for paleoclimate reconstructions. Radiocarbon 60, 469–491 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Müller, S. A. et al. Water mass distribution and air flow time scales in a cost-efficient, three-dimensional ocean mannequin. J. Clim. 19, 5479–5499 (2006).

    Article 

    Google Scholar
     

  • Robinson, S. et al. Global continental and marine detrital εNd: an up to date compilation to be used in understanding marine Nd biking. Chem. Geol. 567, 120119 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pöppelmeier, F. et al. Neodymium isotopes as a paleo-water mass tracer: a model-data reassessment. Quat. Sci. Rev. 279, 107404 (2022).

    Article 

    Google Scholar
     

  • Pöppelmeier, F. et al. Influence of elevated Nd fluxes on the northern Nd isotope finish member of the Atlantic throughout the early Holocene. Paleoceanogr. Paleoclimatol. 35, e2020PA003973 (2020).

    Article 

    Google Scholar
     

  • Howe, J. N. W. et al. North Atlantic Deep Water manufacturing throughout the Last Glacial Maximum. Nat. Commun. 7, 11765 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Du, J. et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations. Nat. Geosci. 11, 749–755 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, L. F. & van de Flierdt, T. Southern Ocean proof for lowered export of North Atlantic Deep Water throughout Heinrich Event 1. Geology 37, 195–198 (2009).

    Article 

    Google Scholar
     

  • Struve, T. et al. Middle Holocene enlargement of Pacific Deep Water into the Southern Ocean. Proc. Natl Acad. Sci. USA 117, 889–894 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, D. J. et al. Sea-ice management on deglacial decrease cell circulation modifications recorded by Drake Passage deep-sea corals. Earth Planet. Sci. Lett. 544, 116405 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lamy, F. et al. Five million years of Antarctic Circumpolar Current power variability. Nature 627, 789–796 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Rae, J. W. B. et al. CO2 storage and launch within the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Abbott, A. N. et al. The sedimentary flux of dissolved uncommon earth parts to the ocean. Geochim. Cosmochim. Acta 154, 186–200 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Huang H. Nd isotope date from Southern Ocean seawater and sediments. Zenodo (2025).

  • Amakawa, H. et al. Neodymium focus and isotopic composition distributions within the southwestern Indian Ocean and the Indian sector of the Southern Ocean. Chem. Geol. 511, 190–203 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Osborne, A. H. et al. The potential of sedimentary foraminiferal uncommon earth factor patterns to hint water plenty up to now. Geochem. Geophys. Geosyst. 18, 1550–1568 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Crocket, Okay. C. et al. Rare earth factor distribution within the NE Atlantic: proof for benthic sources, longevity of the seawater sign, and biogeochemical biking. Front. Mar. Sci. 5, 147 (2018).

    Article 

    Google Scholar
     

  • Hathorne, E. C. et al. Rare earth factor distribution within the Atlantic sector of the Southern Ocean: the steadiness between particle scavenging and vertical provide. Mar. Chem. 177, 157–171 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X.-Y. et al. Rare earth parts (REEs) within the tropical South Atlantic and quantitative deconvolution of their non-conservative habits. Geochim. Cosmochim. Acta 177, 217–237 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Du, J., Haley, B. A. & Mix, A. C. Neodymium isotopes in authigenic phases, backside waters and detrital sediments within the Gulf of Alaska and their implications for paleo-circulation reconstruction. Geochim. Cosmochim. Acta 193, 14–35 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bau, M. et al. Discriminating between completely different genetic sorts of marine ferro-manganese crusts and nodules based mostly on uncommon earth parts and yttrium. Chem. Geol. 381, 1–9 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gale, A. et al. The imply composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wedepohl, Okay. H., Heinrichs, H. & Bridgwater, D. Chemical traits and genesis of the quartz-feldspathic rocks within the Archean crust of Greenland. Contrib. Mineral. Petrol. 107, 163–179 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, D. et al. Composition of the Canadian Precambrian defend and the continental crust of the Earth. Geol. Soc. Lond. Spec. Publ. 24, 275–282 (1986).

    Article 

    Google Scholar
     

  • Blaser, P. et al. Labrador Sea backside water provenance and REE alternate throughout the previous 35,000 years. Earth Planet. Sci. Lett. 542, 116299 (2020).

    Article 
    CAS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41561-025-01853-7
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 days ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 days ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 days ago