Categories: Travel

Unravelling heterogeneity of commuters’ journey conduct: an empirical investigation of commuting regularity utilizing license plate recognition information

This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://link.springer.com/article/10.1007/s11116-025-10713-7
and if you wish to take away this text from our web site please contact us


  • Asgari, H., Jin, X.: An analysis of part-day telecommute impacts on work journey departure occasions. Travel Behav. Soc. 12, 84–92 (2018)

    Article 

    Google Scholar
     

  • Bao, J., Xu, C., Liu, P., Wang, W.: Exploring bikesharing journey patterns and journey functions utilizing sensible card information and on-line level of pursuits. Netw. Spat. Econ. 17, 1231–1253 (2017)

    Article 

    Google Scholar
     

  • Bi, H., Ye, Z.: Exploring ridesourcing journey patterns by fusing multi-source information: an enormous information method. Sustain. Cities Soc. 64, 102499 (2021)

    Article 

    Google Scholar
     

  • Bonnetain, L., Furno, A., El Faouzi, N.E., Fiore, M., Stanica, R., Smoreda, Z., Ziemlicki, C.: TRANSIT: fine-grained human mobility trajectory inference at scale with cellular community signaling information. Transp. Res. Part C Emerg. Technol. 130, 103257 (2021)

    Article 

    Google Scholar
     

  • Cai, H., Kulkarni, S.R., Verdú, S.: Universal entropy estimation by way of block sorting. IEEE Trans. Inf. Theory 50(7), 1551–1561 (2004)

    Article 

    Google Scholar
     

  • Chang, Y., Duan, Z., Yang, D.: Using ALPR information to know the car use behaviour underneath TDM measures. IET Intell. Transp. Syst. 12(10), 1264–1270 (2018)

    Article 

    Google Scholar
     

  • Chen, H., Yang, C., Xu, X.: Clustering car temporal and spatial journey conduct utilizing license plate recognition information. J. Adv. Transp. 2017(1), 1738085 (2017)


    Google Scholar
     

  • Chen, Y., Yin, C., Sun, B.: Nonlinear associations of constructed environments round residences and workplaces with commuting satisfaction. Transp. Res. Part D Transp. Environ. 133, 104315 (2024a)

    Article 

    Google Scholar
     

  • Chen, Y., Zhao, P., Chen, Q.: Forecasting the commuting technology utilizing metropolis-informed GCN and the topological commuter portrait. Transportation, 1–28 (2024b)

  • Crawford, F., Watling, D.P., Connors, R.D.: Identifying street consumer lessons based mostly on repeated journey behaviour utilizing Bluetooth information. Transp. Res. Part A Policy Pract. 113, 55–74 (2018)

    Article 

    Google Scholar
     

  • Deng, J., Gao, L., Chen, X., Yuan, Q.: Taking the identical route daily? An empirical investigation of commuting route stability utilizing private electrical car trajectory information. Transportation 51(4), 1547–1573 (2024)

    Article 

    Google Scholar
     

  • Ezugwu, A., Ikotun, A., Oyelade, O., Abualigah, L., Agushaka, J., Eke, C., Akinyelu, A.: A complete survey of clustering algorithms: state-of-the-art machine studying purposes, taxonomy, challenges, and future analysis prospects. Eng. Appl. Artif. Intell. 110, 104743 (2022)

    Article 

    Google Scholar
     

  • Gao, Y., Kontoyiannis, I., Bienenstock, E.: Estimating the entropy of binary time sequence: methodology, some idea and a simulation research. Entropy 10(2), 71–99 (2008)

    Article 

    Google Scholar
     

  • Goulet-Langlois, G., Koutsopoulos, H.N., Zhao, Z., Zhao, J.: Measuring regularity of particular person journey patterns. IEEE Trans. Intell. Transp. Syst. 19(5), 1583–1592 (2017)

    Article 

    Google Scholar
     

  • Hanson, S., Huff, J.: Classification points within the evaluation of advanced journey conduct. Transportation 13(3), 271–293 (1986)

    Article 

    Google Scholar
     

  • Huang, Y., Xiao, Z., Wang, D., Jiang, H., Wu, D.: Exploring particular person journey patterns throughout non-public automobile trajectory information. IEEE Trans. Intell. Transp. Syst. 21(99), 1–15 (2019)


    Google Scholar
     

  • Huff, J.O., Hanson, S.: Repetition and variability in city journey. Geogr. Anal. 18(2), 97–114 (1986)

    Article 

    Google Scholar
     

  • Ingvardson, J.B., Thorhauge, M., Kaplan, S., Nielsen, O.A., Raveau, S.: Incorporating psychological wants in commute mode alternative modelling: a hybrid alternative framework. Transportation 49(6), 1861–1889 (2022)

    Article 

    Google Scholar
     

  • Jiang, J., Pan, D., Ren, H., Jiang, X., Li, C., Wang, J.: Self-supervised trajectory illustration studying with temporal regularities and journey semantics. In: 2023 IEEE thirty ninth International Conference on Data Engineering (ICDE), pp. 843–855 (2023). IEEE

  • Kapitza, J.: Commuting at evening: how time of day impacts commuter perceptions. Travel Behav. Soc. 35, 100750 (2024)

    Article 

    Google Scholar
     

  • Lei, D., Chen, X., Cheng, L., Zhang, L., Ukkusuri, S.V., Witlox, F.: Inferring temporal motifs for journey sample evaluation utilizing giant scale sensible card information. Transp. Res. Part C Emerg. Technol. 120, 102810 (2020)

    Article 

    Google Scholar
     

  • Li, Y., Dai, Z., Zhu, L., Liu, X.: Analysis of spatial and temporal traits of residents’ mobility based mostly on E-bike GPS trajectory information in Tengzhou metropolis, China. Sustainability 11(18), 5003 (2019)

    Article 

    Google Scholar
     

  • Li, Z., Yan, H., Zhang, C., Tsung, F.: Individualized passenger journey sample multi-clustering based mostly on graph regularized tensor latent dirichlet allocation. Data Min. Knowl. Discov. 36(4), 1247–1278 (2022)

    Article 

    Google Scholar
     

  • Li, W., Zhang, Y., Chen, Y., Ding, L., Zhu, Y., Chen, X.M.: Multi-day exercise sample recognition based mostly on semantic embeddings of exercise chains. Travel Behav. Soc. 34, 100682 (2024)

    Article 

    Google Scholar
     

  • Lin, Y., Wan, H., Guo, S., Lin, Y.: Contrastive pre-training of spatial-temporal trajectory embeddings. arXiv preprint arXiv:2207.14539 (2022)

  • Lin, Y., Zhou, Z., Liu, Y., Lv, H., Wen, H., Li, T., Wan, H.: UniTE: A survey and unified pipeline for pre-training spatiotemporal trajectory embeddings. IEEE Trans. Knowl. Data Eng. (2024)

  • Ling, C., Niu, X., Yang, J., Zhou, J., Yang, T.: Unravelling heterogeneity and dynamics of commuting effectivity: industry-level insights into evolving effectivity gaps based mostly on a disaggregated excess-commuting framework. J. Transp. Geogr. 115, 103820 (2024)

    Article 

    Google Scholar
     

  • Liu, Y., Fang, F., Jing, Y.: How city land use influences commuting flows in Wuhan, Central China: a cell phone signaling information perspective. Sustain. Cities Soc. 53, 101914 (2020)

    Article 

    Google Scholar
     

  • Liu, X., Tan, X., Guo, Y., Chen, Y., Zhang, Z.: Cstrm: contrastive self-supervised trajectory illustration mannequin for trajectory similarity computation. Comput. Commun. 185, 159–167 (2022)

    Article 

    Google Scholar
     

  • Liu, Z., Dai, J., Lin, S., Wang, X.C., Li, X., Lian, Y., Li, R.: Urban mobility within the postpandemic stage: a complete investigation of a wide range of cities in China. J. Transp. Eng. Part A Syst. 149(8), 05023005 (2023)

    Article 

    Google Scholar
     

  • Lizana, M., Tudela, A., Tapia, A.: Analysing the affect of angle and behavior on bicycle commuting. Transp. Res. Part F Traffic Psychol. Behav. 82, 70–83 (2021)

    Article 

    Google Scholar
     

  • Ma, X., Wu, Y.J., Wang, Y., Chen, F., Liu, J.: Mining sensible card information for transit riders’ journey patterns. Transp. Res. Part C Emerg. Technol. 36, 1–12 (2013)

    Article 

    Google Scholar
     

  • Ma, X., Liu, C., Wen, H., Wang, Y., Wu, Y.J.: Understanding commuting patterns utilizing transit sensible card information. J. Transp. Geogr. 58, 135–145 (2017)

    Article 

    Google Scholar
     

  • Ma, X., Tian, X., Jin, Z., Cui, H., Ji, Y., Cheng, L.: Evaluation and determinants of metro customers’ regularity: insights from transit one-card information. J. Transp. Geogr. 118, 103933 (2024)

    Article 

    Google Scholar
     

  • Marcińczak, S., Bartosiewicz, B.: Commuting patterns and concrete kind: proof from Poland. J. Transp. Geogr. 70, 31–39 (2018)

    Article 

    Google Scholar
     

  • Minnen, J., Glorieux, I., van Tienoven, T.P.: Transportation habits: proof from time diary information. Transp. Res. Part A Policy Pract. 76, 25–37 (2015)

    Article 

    Google Scholar
     

  • Park, S.Y., Ham, S.W., Kim, D.Okay.: User segmentation based mostly on journey regularity in e-scooter sharing service. Transp. Res. Rec. 2677(7), 290–306 (2023)

    Article 

    Google Scholar
     

  • Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine studying in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)


    Google Scholar
     

  • Qiu, G., Song, R., He, S., Xu, W., Jiang, M.: Clustering passenger journey information for the potential passenger investigation and line design of personalized commuter bus. IEEE Trans. Intell. Transp. Syst. 20(9), 3351–3360 (2018)

    Article 

    Google Scholar
     

  • Rahman, M., Murthy Gurumurthy, Okay., Kockelman, Okay.M.: Impact of flextime on departure time alternative for home-based commuting journeys in Austin, Texas. Transp. Res. Rec. 2676(1), 446–459 (2022)

    Article 

    Google Scholar
     

  • Raux, C., Ma, T.Y., Cornelis, E.: Variability in every day activity-travel patterns: the case of a one-week journey diary. Eur. Transp. Res. Rev. 8(4), 1–14 (2016)

    Article 

    Google Scholar
     

  • Shen, X., Zhou, Y., Jin, S., Wang, D.: Spatiotemporal affect of land use and family properties on vehicle journey demand. Transp. Res. Part D Transp. Environ. 84, 102359 (2020)

    Article 

    Google Scholar
     

  • Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article 

    Google Scholar
     

  • Sun, L., Zhao, J., Zhang, J., Zhang, F., Ye, Okay., Xu, C.: Activity-based particular person journey regularity exploring with entropy-space Okay-means clustering utilizing sensible card information. Phys. A Stat. Mech. Appl. 636, 129522 (2024)

    Article 

    Google Scholar
     

  • Tao, Y., van Ham, M., Petrović, A.: Changes in commuting mode and the connection with psychological stress: a quasi-longitudinal evaluation in urbanizing China. Travel Behav. Soc. 34, 100667 (2024)

    Article 

    Google Scholar
     

  • Thorhauge, M., Cherchi, E., Rich, J.: How versatile is versatile? Accounting for the impact of rescheduling prospects in alternative of departure time for work journeys. Transp. Res. Part A Policy Pract. 86, 177–193 (2016)

    Article 

    Google Scholar
     

  • Verhetsel, A., Beckers, J., De Meyere, M.: Assessing every day city programs: a heterogeneous commuting community method. Netw. Spat. Econ. 18, 633–656 (2018)

    Article 

    Google Scholar
     

  • Wang, H., Wang, Q., Qu, Y., Wu, X.: Household duty and commuting: the spatial constraints of workers and self-employed rural-to-urban migrant ladies in China—the case of Nanjing. Transportation, 1–18 (2023)

  • Williams, M.J., Whitaker, R.M., Allen, S.M.: Measuring particular person regularity in human visiting patterns. In 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, pp. 117–122 (2012). IEEE

  • Xiao, Z., Xu, S., Li, T., Jiang, H., Zhang, R., Regan, A.C., Chen, H.: On extracting common journey conduct of personal vehicles based mostly on trajectory information evaluation. IEEE Trans. Veh. Technol. 69(12), 14537–14549 (2020)

    Article 

    Google Scholar
     

  • Xu, C., Zhang, Z., Fu, F., Yao, W., Su, H., Hu, Y., Jin, S.: Analysis of spatiotemporal elements affecting visitors security based mostly on multisource information fusion. J. Transp. Eng. Part A Syst. 149(10), 04023098 (2023)

    Article 

    Google Scholar
     

  • Yang, C., Yan, F., Ukkusuri, S.V.: Unraveling traveler mobility patterns and predicting consumer conduct within the Shenzhen metro system. Transportmetrica A Transp. Sci. 14(7), 576–597 (2018)

    Article 

    Google Scholar
     

  • Yao, W., Zhang, M., Jin, S., Ma, D.: Understanding autos commuting sample based mostly on license plate recognition information. Transp. Res. Part C Emerg. Technol. 128, 103142 (2021)

    Article 

    Google Scholar
     

  • Yao, W., Chen, C., Su, H., Chen, N., Jin, S., Bai, C.: Analysis of key commuting routes based mostly on spatiotemporal journey chain. J. Adv. Transp. 2022(1), 6044540 (2022a)


    Google Scholar
     

  • Yao, W., Yu, J., Yang, Y., Chen, N., Jin, S., Hu, Y., Bai, C.: Understanding journey conduct adjustment underneath COVID-19. Commun. Transp. Res. 2, 100068 (2022b)

    Article 

    Google Scholar
     

  • Yao, W., Chen, N., Su, H., Hu, Y., Jin, S., Rong, D.: A novel self-adaption macroscopic elementary diagram contemplating community heterogeneity. Phys. A Stat. Mech. Appl. 613, 128531 (2023)

    Article 

    Google Scholar
     

  • Yao, W., Hu, Y., Bai, C., Jin, S., Yang, C.: Exploring impression of COVID-19 on journey conduct. Netw. Spat. Econ. 24(1), 165–197 (2024)

    Article 

    Google Scholar
     

  • Yao, W., Shen, X., He, Z., Liu, Y., Yang, X., Zeng, J., Jin, S.: Unlocking the potential of cooperative staggered shifts in city networks. Transp. Res. Part C Emerg. Technol. 180, 105354 (2025)

    Article 

    Google Scholar
     

  • Yin, C., Shao, C.: Revisiting commuting, constructed atmosphere and happiness: new proof on a nonlinear relationship. Transp. Res. Part D Transp. Environ. 100, 103043 (2021)

    Article 

    Google Scholar
     

  • Yong, N., Ni, S., Shen, S., Chen, P., Ji, X.: Uncovering steady and occasional human mobility patterns: a case research of the Beijing subway. Phys. A Stat. Mech. Appl. 492, 28–38 (2018)

    Article 

    Google Scholar
     

  • Yu, Y., Cui, Y., Zeng, J., He, C., Wang, D.: Identifying visitors clusters in city networks based mostly on graph idea utilizing license plate recognition information. Phys. A Stat. Mech. Appl. 591, 126750 (2022)

    Article 

    Google Scholar
     

  • Yu, C., Lin, H., Chen, Y., Yang, C., Yin, A., Yuan, Q.: Creating most wanted personalized bus companies: a collaborative evaluation of user-route dynamics. Transp. Res. Part D Transp. Environ. 133, 104312 (2024)

    Article 

    Google Scholar
     

  • Zahnow, R., Abewickrema, W.: Examining regularity in vehicular visitors by means of Bluetooth scanner information: is the every day commuter the common street consumer? J. Transp. Geogr. 109, 103578 (2023)

    Article 

    Google Scholar
     

  • Zeng, J., Yu, Y., Chen, Y., Yang, D., Zhang, L., Wang, D.: Trajectory-as-a-sequence: a novel journey mode identification framework. Transp. Res. Part C Emerg. Technol. 146, 103957 (2023)

    Article 

    Google Scholar
     

  • Zhang, Z., Su, H., Yao, W., Wang, F., Hu, S., Jin, S.: Uncovering the CO2 emissions of autos: a well-to-wheel method. Fundam. Res. 4(5), 1025–1035 (2024)

    Article 

    Google Scholar
     

  • Zhang, C., Huang, Y., Ji, A., Liu, H., Li, J., Ni, A., Lu, W.: Policy implications of the transit metropolis undertaking: a quasi-natural experiment from China. Transp. Policy 162, 155–170 (2025a)

    Article 

    Google Scholar
     

  • Zhang, C., Liu, H., Pan, D., Zheng, L., Skitmore, M., Xia, P., Xiao, G.: Modeling and utility of the competitors and cooperation relationship between on-line ride-hailing and subways. Cities 166, 106230 (2025b)

    Article 

    Google Scholar
     

  • Zhang, C., Ma, H., Xing, X., Huang, M., Lin, N., Yao, D.: The affect mechanism of the willingness to make use of autonomous taxis: A mixed evaluation of social listening and questionnaire survey. Transportation 52, 2475–2509 (2025c). https://doi.org/10.1007/s11116-025-10663-0

    Article 

    Google Scholar
     

  • Zhao, X., Papaix, C., Cao, M., Lyu, N.: Boat commuting, journey satisfaction and well-being: empirical proof from Greater London. Transp. Res. Part D Transp. Environ. 129, 104122 (2024)

    Article 

    Google Scholar
     

  • Ziakopoulos, A., Kontaxi, A., Yannis, G.: Analysis of cell phone use engagement throughout naturalistic driving by means of explainable imbalanced machine studying. Accid. Anal. Prev. 181, 106936 (2023)

    Article 

    Google Scholar
     

  • Zubair, H., Susilawati, S., Talei, A., Pu, Z.: Investigating the position of flex-time working preparations in optimising morning peak-hour journey demand: a survival evaluation method. Transp. Res. Part A Policy Pract. 190, 104229 (2024)

    Article 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
    https://link.springer.com/article/10.1007/s11116-025-10713-7
    and if you wish to take away this text from our web site please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Snow, ice to trigger harmful journey situations in Philadelphia space Friday — timing and snow totals

    This web page was created programmatically, to learn the article in its unique location you…

    5 minutes ago

    Serial wealth creator Lassonde nonetheless having enjoyable

    This web page was created programmatically, to learn the article in its authentic location you'll…

    11 minutes ago

    Residence as a substitute of asset: Lady does not remorse shopping for 50-year-old flat, Lifestyle Information

    This web page was created programmatically, to learn the article in its unique location you…

    17 minutes ago

    I simply purchased this 5-year-old Fujifilm digicam and it proves newer isn’t all the time higher

    This web page was created programmatically, to learn the article in its unique location you…

    21 minutes ago

    LA Fall Fair Marks 45 Years of Family Fun in Los Angeles County

    This web page was created programmatically, to learn the article in its authentic location you…

    34 minutes ago

    Archaeologists use AI to convey prehistoric life to interactive video video games

    This web page was created programmatically, to learn the article in its authentic location you'll…

    36 minutes ago