Categories: News

Future ocean warming could trigger giant reductions in Prochlorococcus biomass and productiveness

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41564-025-02106-4
and if you wish to take away this text from our website please contact us


  • Cheng, L. et al. New document ocean temperatures and associated local weather indicators in 2023. Adv. Atmos. Sci. (2024).

    Article 

    Google Scholar
     

  • Wang, G., Xie, S.-P., Huang, R. X. & Chen, C. Robust warming sample of worldwide subtropical oceans and its mechanism. J. Clim. 28, 8574–8584 (2015).

    Article 

    Google Scholar
     

  • Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from local weather warming. Science 376, 524–526 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bopp, L. et al. Potential affect of local weather change on marine export manufacturing. Glob. Biogeochem. Cycles 15, 81–99 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Plattner, G.-Okay., Joos, F., Stocker, T. F. & Marchal, O. Feedback mechanisms and sensitivities of ocean carbon uptake underneath world warming. Tellus B 53, 564–592 (2001).


    Google Scholar
     

  • Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. Okay. W. Increasing significance of small phytoplankton in a hotter ocean. Glob. Change Biol. 16, 1137–1144 (2010).

    Article 

    Google Scholar
     

  • Edwards, M. & Richardson, A. J. Impact of local weather change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, T. L. Mechanisms and pathways of small-phytoplankton export from the floor ocean. Ann. Rev. Mar. Sci. 11, 57–74 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic charges. ISME J. 12, 1836–1845 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, M. Okay., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A world sample of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Partensky, F. & Garczarek, L. Prochlorococcus: benefits and limits of minimalism. Ann. Rev. Mar. Sci. 2, 305–331 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the construction and performance of collective range. Nat. Rev. Microbiol. 13, 13–27 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martiny, A. C. et al. Marine phytoplankton resilience could reasonable oligotrophic ecosystem responses and biogeochemical feedbacks to local weather change. Limnol. Oceanogr. 67, S378–S389 (2022).

    Article 

    Google Scholar
     

  • Flombaum, P. et al. Present and future world distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laws, E. A. Evaluation of in situ phytoplankton progress charges: a synthesis of information from assorted approaches. Annu. Rev. Mar. Sci. 5, 247–268 (2013).

    Article 

    Google Scholar
     

  • Swalwell, J. E., Ribalet, F. & Armbrust, E. V. Seaflow: a novel underway flow-cytometer for steady observations of phytoplankton within the ocean. Limnol. Oceanogr. Methods 9, 466–477 (2011).

    Article 

    Google Scholar
     

  • Ribalet, F. et al. SeaStream knowledge v1, high-resolution abundance, dimension and biomass of small phytoplankton within the North Pacific. Sci. Data 6, 277 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattern, J. P. et al. A Bayesian strategy to modeling phytoplankton inhabitants dynamics from dimension distribution time collection. PLoS Comput. Biol. 18, e1009733 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter-Cevera, Okay. R. et al. Diel dimension distributions reveal seasonal progress dynamics of a coastal phytoplankter. Proc. Natl Acad. Sci. USA 111, 9852–9857 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribalet, F. et al. Light-driven synchrony of Prochlorococcus progress and mortality within the subtropical Pacific gyre. Proc. Natl Acad. Sci. USA 112, 8008–8012 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter-Cevera, Okay. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fowler, B. L. et al. Dynamics and useful range of the smallest phytoplankton on the Northeast US Shelf. Proc. Natl Acad. Sci. USA 117, 12215–12221 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grone, J. et al. A single Prochlorococcus ecotype dominates the tropical Bay of Bengal with ultradian progress. Environ. Microbiol. (2024).

  • Agawin, N. S. R. & Agustí, S. Prochlorococcus and Synechococcus cells within the central Atlantic Ocean: distribution, progress and mortality (grazing) charges. Vie Milieu 55, 165–175 (2005).


    Google Scholar
     

  • Shalapyonok, A., Olson, R. J. & Shalapyonok, L. S. Ultradian progress in Prochlorococcus spp. Appl. Environ. Microbiol. 64, 1066–1069 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worden, A. & Binder, B. Application of dilution experiments for measuring progress and mortality charges amongst Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159–174 (2003).

    Article 

    Google Scholar
     

  • Liu, Okay., Suzuki, Okay., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability within the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, S. et al. Variations in physiology and genomic perform of Prochlorococcus throughout the jap Indian Ocean. J. Geophys. Res. Oceans 128, e2023JC019898 (2023).

    Article 

    Google Scholar
     

  • Kuipers, B. R. & Witte, H. J. Prochlorophytes as secondary prey for heterotrophic nanoflagellates within the deep chlorophyll most layer of the (sub)tropical North Atlantic. Mar. Ecol. Prog. Ser. 204, 53–63 (2000).

    Article 

    Google Scholar
     

  • Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus progress charge and contribution to major manufacturing within the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).

    Article 

    Google Scholar
     

  • Landry, M. R. et al. Microbial neighborhood biomass, manufacturing and grazing alongside 110° E within the jap Indian Ocean. Deep Sea Res. 202, 105134 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B. et al. Close coupling between phytoplankton progress and microzooplankton grazing within the western South China Sea. Limnol. Oceanogr. 54, 1084–1097 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M., Liu, H. & Li, H. Effect of mesozooplankton feeding selectivity on the dynamics of algae in presence of intermediate grazers—a laboratory simulation. Mar. Ecol. Prog. Ser. 486, 47–58 (2013).

    Article 

    Google Scholar
     

  • Brown, S. L. et al. Picophytoplankton dynamics and manufacturing within the Arabian Sea throughout the 1995 Southwest Monsoon. Deep Sea Res. 46, 1745–1768 (1999).

    Article 

    Google Scholar
     

  • Reckermann, M. & Veldhuis, M. Trophic interactions between picophytoplankton and micro- and nanozooplankton within the western Arabian Sea throughout the NE monsoon 1993. Aquat. Microb. Ecol. 12, 263–273 (1997).

    Article 

    Google Scholar
     

  • Casey, J. R., Lomas, M. W., Mandecki, J. & Walker, D. E. Prochlorococcus contributes to new manufacturing within the Sargasso Sea deep chlorophyll most. Geophys. Res. Lett. 34, L10604 (2007).

    Article 

    Google Scholar
     

  • Johnson, Z. I. et al. Niche partitioning amongst Prochlorococcus ecotypes alongside ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biller, S. J. et al. Environmental and taxonomic drivers of bacterial extracellular vesicle manufacturing in marine ecosystems. Appl. Environ. Microbiol. 89, e00594-23 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinser, E. R. et al. Influence of sunshine and temperature on Prochlorococcus ecotype distributions within the Atlantic Ocean. Limnol. Oceanogr. 52, 2205–2220 (2007).

    Article 

    Google Scholar
     

  • Smith, A. N. et al. Comparing Prochlorococcus temperature niches within the lab and throughout ocean basins. Limnol. Oceanogr. 66, 2632–2647 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kremer, C. T., Thomas, M. Okay. & Litchman, E. Temperature- and size-scaling of phytoplankton inhabitants progress charges: reconciling the Eppley curve and the metabolic principle of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).

    Article 

    Google Scholar
     

  • Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton useful sorts exhibit various responses to thermal change. Nat. Commun. 12, 6413 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strauss, J. et al. The Bay of Bengal exposes plentiful photosynthetic picoplankton and newfound range alongside salinity-driven gradients. Environ. Microbiol. 25, 2118–2141 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Follows, M. J. & Dutkiewicz, S. Modeling various communities of marine microbes. Annu. Rev. Mar. Sci. 3, 427–451 (2011).

    Article 

    Google Scholar
     

  • Anderson, S. I. et al. Phytoplankton thermal trait parameterization alters neighborhood construction and biogeochemical processes in a modeled ocean. Glob. Change Biol. 30, e17093 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: mild utilization throughout latitudes. Proc. Natl Acad. Sci. USA 118, e2111300118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barton, S. et al. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming. Glob. Change Biol. 29, 5261–5275 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, M. Okay. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).

    Article 

    Google Scholar
     

  • Labban, A., Shibl, A. A., Calleja, M. L., Hong, P.-Y. & Morán, X. A. G. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus pressure to various temperatures. Environ. Microbiol. 25, 1007–1021 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alonso-Sáez, L. et al. Transcriptional mechanisms of thermal acclimation in Prochlorococcus. mBio 14, e03425-22 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiksnis, C. et al. Proteomics evaluation reveals differential acclimation of coastal and oceanic Synechococcus to local weather warming and iron limitation. Front. Microbiol. 15, 1323499 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dedman, C. J., Barton, S., Fournier, M. & Rickaby, R. E. M. Shotgun proteomics reveals temperature-dependent regulation of main nutrient metabolism in coastal Synechococcus sp. WH5701. Algal Res. 75, 103279 (2023).

    Article 

    Google Scholar
     

  • Britten, G. L. & Sibert, E. C. Enhanced fish manufacturing throughout a interval of maximum world heat. Nat. Commun. 11, 5636 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities within the world ocean. Glob. Change Biol. 27, 1196–1213 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Archibald, Okay., Dutkiewicz, S., Laufkötter, C. & Moeller, H. V. Thermal responses in world marine planktonic meals webs are mediated by temperature results on metabolism. J. Geophys. Res. (2022).

  • Atkinson, A. et al. Steeper dimension spectra with reducing phytoplankton biomass point out sturdy trophic amplification and future fish declines. Nat. Commun. 15, 381 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, J. W., Hogle, S. L., Rosendo, Okay. & Chisholm, S. W. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 13, 1506–1519 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashkezari, M. D. et al. Simons Collaborative Marine Atlas Project (Simons CMAP): an open-source portal to share, visualize, and analyze ocean knowledge. Limnol. Oceanogr. Methods 19, 488–496 (2021).

    Article 

    Google Scholar
     

  • Sosik, H. M., Olson, R. J., Neubert, M. G., Shalapyonok, A. & Solow, A. R. Growth charges of coastal phytoplankton from time-series measurements with a submersible circulate cytometer. Limnol. Oceanogr. 48, 1756–1765 (2003).

    Article 

    Google Scholar
     

  • Hamilton, M. et al. Dynamics of Teleaulax-like cryptophytes throughout the decline of a purple water bloom within the Columbia River Estuary. J. Plankton Res. 39, 589–599 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gelman, A. & Rubin, D. B. Inference from iterative simulation utilizing a number of sequences. Stat. Sci. 7, 457–472 (1992).

    Article 

    Google Scholar
     

  • Jones, C., Clayton, S., Ribalet, F., Armbrust, E. V. & Harchaoui, Z. A kernel-based change detection technique to map shifts in phytoplankton communities measured by circulate cytometry. Methods Ecol. Evol. 12, 1687–1698 (2021).

    Article 

    Google Scholar
     

  • Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical mannequin for carbon and ecosystem research. Geosci. Model Dev. 8, 2465–2513 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Global Ocean Biogeochemistry Analysis and Forecast. E.U. Copernicus Marine Service Information (CMEMS) (2021).

  • Grimaud, G. M., Mairet, F., Sciandra, A. & Bernard, O. Modeling the temperature impact on the precise progress charge of phytoplankton: a evaluate. Rev. Environ. Sci. Biotechnol. 16, 625–645 (2017).

    Article 

    Google Scholar
     

  • Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton most progress charges from temperature: enhancing on the Eppley curve utilizing quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).

    Article 

    Google Scholar
     

  • Mullen, Okay. M., Ardia, D., Gil, D. L., Windover, D. & Cline, J. DEoptim: an R bundle for world optimization by differential evolution. J. Stat. Softw. 40, 1–26 (2011).

    Article 

    Google Scholar
     

  • Dutkiewicz, S. et al. Multiple biotic interactions set up phytoplankton neighborhood construction throughout environmental gradients. Limnol. Oceanogr. 69, 1086–1100 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Holling, C. S. The useful response of predators to prey density and its function in mimicry and inhabitants regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).

    Article 

    Google Scholar
     

  • Dutkiewicz, S. et al. Dimensions of marine phytoplankton range. Biogeosciences 17, 609–634 (2020).

    Article 

    Google Scholar
     

  • Dutkiewicz, S. et al. Capturing optically necessary constituents and properties in a marine biogeochemical and ecosystem mannequin. Biogeosciences 12, 4447–4481 (2015).

    Article 

    Google Scholar
     

  • Sokolov, A. P. et al. MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation (2005); https://dspace.mit.edu/handle/1721.1/29789

  • Monier, E., Scott, J. R., Sokolov, A. P., Forest, C. E. & Schlosser, C. A. An built-in evaluation modeling framework for uncertainty research in world and regional local weather change: the MIT IGSM-CAM (model 1.0). Geosci. Model Dev. 6, 2063–2085 (2013).

    Article 

    Google Scholar
     

  • Monier, E. et al. Toward a constant modeling framework to evaluate multi-sectoral local weather impacts. Nat. Commun. 9, 660 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes mannequin for research of the ocean on parallel computer systems. J. Geophys. Res. Oceans 102, 5753–5766 (1997).

    Article 

    Google Scholar
     

  • Sokolov, A. et al. Description and analysis of the MIT Earth System Model (MESM). J. Adv. Model. Earth Syst. 10, 1759–1789 (2018).

    Article 

    Google Scholar
     

  • Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton range in a altering local weather. Nat. Commun. 12, 5372 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribalet, F., Dutkiewicz, S., Monier, E. & Armbrust, E. V. Future ocean warming threatens key photosynthetic microbes. Zenodo (2024).


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41564-025-02106-4
    and if you wish to take away this text from our website please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Methods to Fall Asleep Quicker and Keep Asleep, According to Experts

    This web page was created programmatically, to learn the article in its authentic location you…

    2 weeks ago

    Oh. What. Fun. film overview & movie abstract (2025)

    This web page was created programmatically, to learn the article in its unique location you…

    2 weeks ago

    The Subsequent Gaming Development Is… Uh, Controllers for Your Toes?

    This web page was created programmatically, to learn the article in its unique location you…

    2 weeks ago

    Russia blocks entry to US youngsters’s gaming platform Roblox

    This web page was created programmatically, to learn the article in its authentic location you…

    2 weeks ago

    AL ZORAH OFFERS PREMIUM GOLF AND LIFESTYLE PRIVILEGES WITH EXCLUSIVE 100 CLUB MEMBERSHIP

    This web page was created programmatically, to learn the article in its unique location you…

    2 weeks ago

    Treasury Targets Cash Laundering Community Supporting Venezuelan Terrorist Organization Tren de Aragua

    This web page was created programmatically, to learn the article in its authentic location you'll…

    2 weeks ago