This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41564-025-02106-4
and if you wish to take away this text from our website please contact us
Cheng, L. et al. New document ocean temperatures and associated local weather indicators in 2023. Adv. Atmos. Sci. (2024).
Wang, G., Xie, S.-P., Huang, R. X. & Chen, C. Robust warming sample of worldwide subtropical oceans and its mechanism. J. Clim. 28, 8574–8584 (2015).
Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from local weather warming. Science 376, 524–526 (2022).
Bopp, L. et al. Potential affect of local weather change on marine export manufacturing. Glob. Biogeochem. Cycles 15, 81–99 (2001).
Plattner, G.-Okay., Joos, F., Stocker, T. F. & Marchal, O. Feedback mechanisms and sensitivities of ocean carbon uptake underneath world warming. Tellus B 53, 564–592 (2001).
Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. Okay. W. Increasing significance of small phytoplankton in a hotter ocean. Glob. Change Biol. 16, 1137–1144 (2010).
Edwards, M. & Richardson, A. J. Impact of local weather change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).
Richardson, T. L. Mechanisms and pathways of small-phytoplankton export from the floor ocean. Ann. Rev. Mar. Sci. 11, 57–74 (2019).
Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic charges. ISME J. 12, 1836–1845 (2018).
Thomas, M. Okay., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A world sample of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).
Partensky, F. & Garczarek, L. Prochlorococcus: benefits and limits of minimalism. Ann. Rev. Mar. Sci. 2, 305–331 (2010).
Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the construction and performance of collective range. Nat. Rev. Microbiol. 13, 13–27 (2015).
Martiny, A. C. et al. Marine phytoplankton resilience could reasonable oligotrophic ecosystem responses and biogeochemical feedbacks to local weather change. Limnol. Oceanogr. 67, S378–S389 (2022).
Flombaum, P. et al. Present and future world distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).
Laws, E. A. Evaluation of in situ phytoplankton progress charges: a synthesis of information from assorted approaches. Annu. Rev. Mar. Sci. 5, 247–268 (2013).
Swalwell, J. E., Ribalet, F. & Armbrust, E. V. Seaflow: a novel underway flow-cytometer for steady observations of phytoplankton within the ocean. Limnol. Oceanogr. Methods 9, 466–477 (2011).
Ribalet, F. et al. SeaStream knowledge v1, high-resolution abundance, dimension and biomass of small phytoplankton within the North Pacific. Sci. Data 6, 277 (2019).
Mattern, J. P. et al. A Bayesian strategy to modeling phytoplankton inhabitants dynamics from dimension distribution time collection. PLoS Comput. Biol. 18, e1009733 (2022).
Hunter-Cevera, Okay. R. et al. Diel dimension distributions reveal seasonal progress dynamics of a coastal phytoplankter. Proc. Natl Acad. Sci. USA 111, 9852–9857 (2014).
Ribalet, F. et al. Light-driven synchrony of Prochlorococcus progress and mortality within the subtropical Pacific gyre. Proc. Natl Acad. Sci. USA 112, 8008–8012 (2015).
Hunter-Cevera, Okay. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).
Fowler, B. L. et al. Dynamics and useful range of the smallest phytoplankton on the Northeast US Shelf. Proc. Natl Acad. Sci. USA 117, 12215–12221 (2020).
Grone, J. et al. A single Prochlorococcus ecotype dominates the tropical Bay of Bengal with ultradian progress. Environ. Microbiol. (2024).
Agawin, N. S. R. & Agustí, S. Prochlorococcus and Synechococcus cells within the central Atlantic Ocean: distribution, progress and mortality (grazing) charges. Vie Milieu 55, 165–175 (2005).
Shalapyonok, A., Olson, R. J. & Shalapyonok, L. S. Ultradian progress in Prochlorococcus spp. Appl. Environ. Microbiol. 64, 1066–1069 (1998).
Worden, A. & Binder, B. Application of dilution experiments for measuring progress and mortality charges amongst Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159–174 (2003).
Liu, Okay., Suzuki, Okay., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability within the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2021).
Jiang, S. et al. Variations in physiology and genomic perform of Prochlorococcus throughout the jap Indian Ocean. J. Geophys. Res. Oceans 128, e2023JC019898 (2023).
Kuipers, B. R. & Witte, H. J. Prochlorophytes as secondary prey for heterotrophic nanoflagellates within the deep chlorophyll most layer of the (sub)tropical North Atlantic. Mar. Ecol. Prog. Ser. 204, 53–63 (2000).
Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus progress charge and contribution to major manufacturing within the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).
Landry, M. R. et al. Microbial neighborhood biomass, manufacturing and grazing alongside 110° E within the jap Indian Ocean. Deep Sea Res. 202, 105134 (2022).
Chen, B. et al. Close coupling between phytoplankton progress and microzooplankton grazing within the western South China Sea. Limnol. Oceanogr. 54, 1084–1097 (2009).
Chen, M., Liu, H. & Li, H. Effect of mesozooplankton feeding selectivity on the dynamics of algae in presence of intermediate grazers—a laboratory simulation. Mar. Ecol. Prog. Ser. 486, 47–58 (2013).
Brown, S. L. et al. Picophytoplankton dynamics and manufacturing within the Arabian Sea throughout the 1995 Southwest Monsoon. Deep Sea Res. 46, 1745–1768 (1999).
Reckermann, M. & Veldhuis, M. Trophic interactions between picophytoplankton and micro- and nanozooplankton within the western Arabian Sea throughout the NE monsoon 1993. Aquat. Microb. Ecol. 12, 263–273 (1997).
Casey, J. R., Lomas, M. W., Mandecki, J. & Walker, D. E. Prochlorococcus contributes to new manufacturing within the Sargasso Sea deep chlorophyll most. Geophys. Res. Lett. 34, L10604 (2007).
Johnson, Z. I. et al. Niche partitioning amongst Prochlorococcus ecotypes alongside ocean-scale environmental gradients. Science 311, 1737–1740 (2006).
Biller, S. J. et al. Environmental and taxonomic drivers of bacterial extracellular vesicle manufacturing in marine ecosystems. Appl. Environ. Microbiol. 89, e00594-23 (2023).
Zinser, E. R. et al. Influence of sunshine and temperature on Prochlorococcus ecotype distributions within the Atlantic Ocean. Limnol. Oceanogr. 52, 2205–2220 (2007).
Smith, A. N. et al. Comparing Prochlorococcus temperature niches within the lab and throughout ocean basins. Limnol. Oceanogr. 66, 2632–2647 (2021).
Kremer, C. T., Thomas, M. Okay. & Litchman, E. Temperature- and size-scaling of phytoplankton inhabitants progress charges: reconciling the Eppley curve and the metabolic principle of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton useful sorts exhibit various responses to thermal change. Nat. Commun. 12, 6413 (2021).
Strauss, J. et al. The Bay of Bengal exposes plentiful photosynthetic picoplankton and newfound range alongside salinity-driven gradients. Environ. Microbiol. 25, 2118–2141 (2023).
Follows, M. J. & Dutkiewicz, S. Modeling various communities of marine microbes. Annu. Rev. Mar. Sci. 3, 427–451 (2011).
Anderson, S. I. et al. Phytoplankton thermal trait parameterization alters neighborhood construction and biogeochemical processes in a modeled ocean. Glob. Change Biol. 30, e17093 (2024).
Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: mild utilization throughout latitudes. Proc. Natl Acad. Sci. USA 118, e2111300118 (2021).
Barton, S. et al. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming. Glob. Change Biol. 29, 5261–5275 (2023).
Thomas, M. Okay. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).
Labban, A., Shibl, A. A., Calleja, M. L., Hong, P.-Y. & Morán, X. A. G. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus pressure to various temperatures. Environ. Microbiol. 25, 1007–1021 (2023).
Alonso-Sáez, L. et al. Transcriptional mechanisms of thermal acclimation in Prochlorococcus. mBio 14, e03425-22 (2023).
Schiksnis, C. et al. Proteomics evaluation reveals differential acclimation of coastal and oceanic Synechococcus to local weather warming and iron limitation. Front. Microbiol. 15, 1323499 (2024).
Dedman, C. J., Barton, S., Fournier, M. & Rickaby, R. E. M. Shotgun proteomics reveals temperature-dependent regulation of main nutrient metabolism in coastal Synechococcus sp. WH5701. Algal Res. 75, 103279 (2023).
Britten, G. L. & Sibert, E. C. Enhanced fish manufacturing throughout a interval of maximum world heat. Nat. Commun. 11, 5636 (2020).
Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities within the world ocean. Glob. Change Biol. 27, 1196–1213 (2021).
Archibald, Okay., Dutkiewicz, S., Laufkötter, C. & Moeller, H. V. Thermal responses in world marine planktonic meals webs are mediated by temperature results on metabolism. J. Geophys. Res. (2022).
Atkinson, A. et al. Steeper dimension spectra with reducing phytoplankton biomass point out sturdy trophic amplification and future fish declines. Nat. Commun. 15, 381 (2024).
Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).
Becker, J. W., Hogle, S. L., Rosendo, Okay. & Chisholm, S. W. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 13, 1506–1519 (2019).
Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).
Ashkezari, M. D. et al. Simons Collaborative Marine Atlas Project (Simons CMAP): an open-source portal to share, visualize, and analyze ocean knowledge. Limnol. Oceanogr. Methods 19, 488–496 (2021).
Sosik, H. M., Olson, R. J., Neubert, M. G., Shalapyonok, A. & Solow, A. R. Growth charges of coastal phytoplankton from time-series measurements with a submersible circulate cytometer. Limnol. Oceanogr. 48, 1756–1765 (2003).
Hamilton, M. et al. Dynamics of Teleaulax-like cryptophytes throughout the decline of a purple water bloom within the Columbia River Estuary. J. Plankton Res. 39, 589–599 (2017).
Gelman, A. & Rubin, D. B. Inference from iterative simulation utilizing a number of sequences. Stat. Sci. 7, 457–472 (1992).
Jones, C., Clayton, S., Ribalet, F., Armbrust, E. V. & Harchaoui, Z. A kernel-based change detection technique to map shifts in phytoplankton communities measured by circulate cytometry. Methods Ecol. Evol. 12, 1687–1698 (2021).
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical mannequin for carbon and ecosystem research. Geosci. Model Dev. 8, 2465–2513 (2015).
Global Ocean Biogeochemistry Analysis and Forecast. E.U. Copernicus Marine Service Information (CMEMS) (2021).
Grimaud, G. M., Mairet, F., Sciandra, A. & Bernard, O. Modeling the temperature impact on the precise progress charge of phytoplankton: a evaluate. Rev. Environ. Sci. Biotechnol. 16, 625–645 (2017).
Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton most progress charges from temperature: enhancing on the Eppley curve utilizing quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).
Mullen, Okay. M., Ardia, D., Gil, D. L., Windover, D. & Cline, J. DEoptim: an R bundle for world optimization by differential evolution. J. Stat. Softw. 40, 1–26 (2011).
Dutkiewicz, S. et al. Multiple biotic interactions set up phytoplankton neighborhood construction throughout environmental gradients. Limnol. Oceanogr. 69, 1086–1100 (2024).
Holling, C. S. The useful response of predators to prey density and its function in mimicry and inhabitants regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).
Dutkiewicz, S. et al. Dimensions of marine phytoplankton range. Biogeosciences 17, 609–634 (2020).
Dutkiewicz, S. et al. Capturing optically necessary constituents and properties in a marine biogeochemical and ecosystem mannequin. Biogeosciences 12, 4447–4481 (2015).
Sokolov, A. P. et al. MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation (2005); https://dspace.mit.edu/handle/1721.1/29789
Monier, E., Scott, J. R., Sokolov, A. P., Forest, C. E. & Schlosser, C. A. An built-in evaluation modeling framework for uncertainty research in world and regional local weather change: the MIT IGSM-CAM (model 1.0). Geosci. Model Dev. 6, 2063–2085 (2013).
Monier, E. et al. Toward a constant modeling framework to evaluate multi-sectoral local weather impacts. Nat. Commun. 9, 660 (2018).
Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes mannequin for research of the ocean on parallel computer systems. J. Geophys. Res. Oceans 102, 5753–5766 (1997).
Sokolov, A. et al. Description and analysis of the MIT Earth System Model (MESM). J. Adv. Model. Earth Syst. 10, 1759–1789 (2018).
Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton range in a altering local weather. Nat. Commun. 12, 5372 (2021).
Ribalet, F., Dutkiewicz, S., Monier, E. & Armbrust, E. V. Future ocean warming threatens key photosynthetic microbes. Zenodo (2024).
This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41564-025-02106-4
and if you wish to take away this text from our website please contact us
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you…
This web page was created programmatically, to learn the article in its unique location you…
This web page was created programmatically, to learn the article in its authentic location you'll…