Categories: Science

Transcriptional interferences guarantee one olfactory receptor per ant neuron

This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09664-x
and if you wish to take away this text from our website please contact us


  • Hanchate, N. Ok. et al. Single-cell transcriptomics reveals receptor transformations throughout olfactory neurogenesis. Science 350, 1251–1255 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, L., Li, Q. & Xie, X. S. Olfactory sensory neurons transiently categorical a number of olfactory receptors throughout growth. Mol. Syst. Biol. 11, 844 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuss, S. H. & Ray, A. Mechanisms of odorant receptor gene selection in Drosophila and vertebrates. Mol. Cell. Neurosci. 41, 101–112 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes, I. H. A. et al. Expert curation of the human and mouse olfactory receptor gene repertoires identifies conserved coding areas cut up throughout two exons. BMC Genom. 21, 196 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ressler, Ok. J., Sullivan, S. L. & Buck, L. B. A zonal group of odorant receptor gene expression within the olfactory epithelium. Cell 73, 597–609 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markenscoff-Papadimitriou, E. et al. Enhancer interplay networks as a way for singular olfactory receptor expression. Cell 159, 543–557 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalton, R. P., Lyons, D. B. & Lomvardas, S. Co-opting the unfolded protein response to elicit olfactory receptor suggestions. Cell 155, 321–332 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pourmorady, A. D. et al. RNA-mediated symmetry breaking permits singular olfactory receptor selection. Nature 625, 181–188 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalton, R. P. & Lomvardas, S. Chemosensory receptor specificity and regulation. Annu. Rev. Neurosci. 38, 331–349 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression within the Drosophila antenna. Cell 96, 725–736 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McLaughlin, C. N. et al. Single-cell transcriptomes of growing and grownup olfactory receptor neurons in Drosophila. eLife 10, e63856 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mermet, J. et al. Multilayer regulation underlies the useful precision and evolvability of the olfactory system. Preprint at bioRxiv (2025).

  • Tichy, A. L., Ray, A. & Carlson, J. R. A brand new Drosophila POU gene, pdm3, acts in odor receptor expression and axon concentrating on of olfactory neurons. J. Neurosci. 28, 7121–7129 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clyne, P. J. et al. A novel household of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. A functionally conserved gene regulatory community module governing olfactory neuron range. PLoS Genet. 12, e1005780 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endo, Ok., Aoki, T., Yoda, Y., Kimura, Ok.-I. & Hama, C. Notch sign organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat. Neurosci. 10, 153–160 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ray, A., van Naters, W., van der, G., Shiraiwa, T. & Carlson, J. R. Mechanisms of odor receptor gene selection in Drosophila. Neuron 53, 353–369 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, H. et al. An engineered orco mutation produces aberrant social conduct and faulty neural growth in ants. Cell 170, 736–747 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Phylogenetic and transcriptomic evaluation of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 8, e1002930 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenzie, S. Ok. & Kronauer, D. J. C. The genomic structure and molecular evolution of ant odorant receptors. Genome Res. 28, 1757–1765 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pask, G. M. et al. Specialized odorant receptors in social bugs that detect cuticular hydrocarbon cues and candidate pheromones. Nat. Commun. 8, 297 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slone, J. D. et al. Functional characterization of odorant receptors within the ponerine ant, Harpegnathos saltator. Proc. Natl Acad. Sci. USA 114, 8586–8591 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brahma, A. et al. Transcriptional and post-transcriptional management of odorant receptor selection in ants. Curr. Biol. 33, 5456–5466 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sieriebriennikov, B. et al. Orco-dependent survival of odorant receptor neurons in ants. Sci. Adv. 10, eadk9000 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mika, Ok. et al. Olfactory receptor-dependent receptor repression in Drosophila. Sci. Adv. 7, eabe3745 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber, A. J. et al. A complete evaluation of three’ finish sequencing information units reveals novel polyadenylation alerts and the repressive function of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 26, 1145–1159 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Y., Zhang, H.-W., Wu, X.-X. & Zhang, Y. Structural foundation of exoribonuclease-mediated mRNA transcription termination. Nature 628, 887–893 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvo-Roitberg, E. et al. Challenges in figuring out mRNA transcript begins and ends from long-read sequencing information. Genome Res. 34, 1719–1734 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohler, U., Liao, G.-C., Niemann, H. & Rubin, G. M. Computational evaluation of core promoters within the Drosophila genome. Genome Biol. 3, R87 (2002).

    Article 

    Google Scholar
     

  • FitzGerald, P. C., Sturgill, D., Shyakhtenko, A., Oliver, B. & Vinson, C. Comparative genomics of Drosophila and human core promoters. Genome Biol. 7, R53 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vo Ngoc, L., Cassidy, C. J., Huang, C. Y., Duttke, S. H. C. & Kadonaga, J. T. The human initiator is a definite and ample aspect that’s exactly positioned in targeted core promoters. Genes Dev. 31, 6–11 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sieriebriennikov, B., Reinberg, D. & Desplan, C. A molecular toolkit for superorganisms. Trends Genet. 37, 846–859 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greger, I. H. & Proudfoot, N. J. Poly(A) alerts management each transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J. 17, 4771–4779 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hainer, S. J., Pruneski, J. A., Mitchell, R. D., Monteverde, R. M. & Martens, J. A. Intergenic transcription causes repression by directing nucleosome meeting. Genes Dev. 25, 29–40 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greger, I. H., Aranda, A. & Proudfoot, N. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 8415–8420 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsompana, M. & Buck, M. J. Chromatin accessibility: a window into the genome. Epigenet. Chromatin 7, 33 (2014).

    Article 

    Google Scholar
     

  • Makalowska, I., Lin, C.-F. & Makalowski, W. Overlapping genes in vertebrate genomes. Comput. Biol. Chem. 29, 1–12 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosa, S., Duncan, S. & Dean, C. Mutually unique sense–antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 7, 13031 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiefer, L. et al. WAPL features as a rheostat of protocadherin isoform range that controls neural wiring. Science 380, eadf8440 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter selection. Cell 177, 639–653 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hobson, D. J., Wei, W., Steinmetz, L. M. & Svejstrup, J. Q. RNA polymerase II collision interrupts convergent transcription. Mol. Cell 48, 365–374 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Evolutionary course of underlying receptor gene growth and mobile divergence of olfactory sensory neurons in honeybees. Mol. Biol. Evol. 42, msaf080 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prieto-Godino, L. L. et al. Evolution of acid-sensing olfactory circuits in drosophilids. Neuron 93, 661–676 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y.-C. A. et al. Cutoff suppresses RNA polymerase II termination to make sure expression of piRNA precursors. Mol. Cell 63, 97–109 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sieber, Ok. et al. Embryo injections for CRISPR-mediated mutagenesis within the ant Harpegnathos saltator. J. Vis. Exp. (2021).

  • Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets recognized by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. The preliminary uridine of main piRNAs doesn’t create the tenth adenine that Is the hallmark of secondary piRNAs. Mol. Cell 56, 708–716 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Bias-minimized quantification of microRNA reveals widespread various processing and three’ finish modification. Nucleic Acids Res. 47, 2630–2640 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Y., Wu, P.-H., Beane, T., Zamore, P. D. & Weng, Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq utilizing distinctive molecular identifiers. BMC Genom. 19, 531 (2018).

    Article 

    Google Scholar
     

  • Ibrahim, F., Oppelt, J., Maragkakis, M. & Mourelatos, Z. TERA-seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Res. 49, e115 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, N. et al. Direct promoter repression by BCL11A controls the fetal to grownup hemoglobin change. Cell 173, 430–442 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niimura, Y. & Nei, M. Comparative evolutionary evaluation of olfactory receptor gene clusters between people and mice. Gene 346, 13–21 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shields, E. J., Sheng, L., Weiner, A. Ok., Garcia, B. A. & Bonasio, R. High-quality genome assemblies reveal lengthy non-coding RNAs expressed in ant brains. Cell Rep. 23, 3078–3090 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez-Diaz, C., Martin, F., Garcia-Fernandez, J. M. & Alcorta, E. The two important olfactory receptor households in Drosophila, ORs and IRs: acomparative method. Front. Cell. Neurosci. 12, 253 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell growth and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression information evaluation. Genome Biol. 19, 15 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gayoso, A. et al. A Python library for probabilistic evaluation of single-cell omics information. Nat. Biotechnol. 40, 163–166 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the grownup fruit fly. Science 375, eabk2432 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: elementary algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).

  • Gospocic, J. et al. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 184, 5807–5823 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. New methods to enhance minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramírez, F. et al. deepTools2: a subsequent era net server for deep-sequencing information evaluation. Nucleic Acids Res. 44, W160–W165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore methods. In Proc. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 (IEEE, 2019).

  • Hoskins, R. A. et al. Genome-wide evaluation of promoter structure in Drosophila melanogaster. Genome Res. 21, 182–192 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview model 2—a a number of sequence alignment editor and evaluation workbench. Bioinformatics 25, 1189–1191 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09664-x
    and if you wish to take away this text from our website please contact us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Open-Ear Audio Is Having a Large Second Proper Now

    This web page was created programmatically, to learn the article in its unique location you'll…

    2 minutes ago

    The Lifestyle Center – Think Tank

    This web page was created programmatically, to learn the article in its authentic location you…

    11 minutes ago

    Iconic Oscar Wilde Portrait by Legendary Photographer Sarony to Be Bought at Public sale

    This web page was created programmatically, to learn the article in its unique location you…

    13 minutes ago

    Bond, Tucker Acknowledged as CAA Swimmers of the Week

    This web page was created programmatically, to learn the article in its unique location you…

    18 minutes ago

    Kami-Con is again! 5 causes you will love Alabama’s largest anime + gaming con

    This web page was created programmatically, to learn the article in its authentic location you…

    33 minutes ago

    The Rising Reputation of Way of life Spending Accounts

    This web page was created programmatically, to learn the article in its unique location you'll…

    34 minutes ago