This page has been generated programmatically; to access the article in its original setting, you can follow the link below:
https://www.nature.com/articles/s41556-024-01564-y
and if you wish to have this article removed from our site, please get in touch with us
Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).
Carvalhal Marques, F., Volovik, Y. & Cohen, E. The roles of cellular and organismal aging in the development of late-onset disorders. Annu. Rev. Pathol. 10, 1–23 (2015).
Paulson, H. L. Protein destiny in neurodegenerative proteinopathies: polyglutamine disorders join the (mis)fold. Am. J. Hum. Genet. 64, 339–345 (1999).
Fan, H. C. et al. Polyglutamine (PolyQ) disorders: from genetics to therapies. Cell Transplant. 23, 441–458 (2014).
Grøntvedt, G. R. et al. Alzheimer’s disease. Curr. Biol. 28, R645–R649 (2018).
Sala Frigerio, C. et al. The principal risk factors for Alzheimer’s disease: age, gender, and genetics influence the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306.e6 (2019).
Amaducci, L. & Tesco, G. Aging as a significant threat for degenerative illnesses of the central nervous system. Curr. Opin. Neurol. 7, 283–286 (1994).
Reichel, W. The science of aging. J. Am. Geriatr. Soc. 14, 431–436 (1966).
Soultoukis, G. A. & Partridge, L. Nutritional protein, metabolism, and aging. Annu. Rev. Biochem. 85, 5–34 (2016).
Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans variant that survives twice as long as the wild type. Nature 366, 461–464 (1993).
Hsin, H. & Kenyon, C. Signals emanating from the reproductive system influence the lifespan of C. elegans. Nature 399, 362–366 (1999).
Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Modifying proteostasis for medical intervention. Science 319, 916–919 (2008).
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The characteristics of aging. Cell 153, 1194–1217 (2013).
David, D. C. et al. Extensive protein aggregation as an intrinsic aspect of aging in C. elegans. PLoS Biol. 8, e1000450 (2010).
“`
Steinkraus, K. A. et al. Caloric restriction mitigates proteotoxicity and promotes longevity by an hsf-1-dependent pathway in Caenorhabditis elegans. Aging Cell 7, 394–404 (2008).
Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Contrasting functions safeguard against aging-related proteotoxicity. Science 313, 1604–1610 (2006).
Gontier, G., George, C., Chaker, Z., Holzenberger, M. & Aid, S. Inhibiting IGF signaling in mature neurons alleviates Alzheimer’s disease pathology by promoting amyloid-beta clearance. J. Neurosci. 35, 11500–11513 (2015).
Cohen, E. et al. Diminished IGF-1 signaling postpones age-related proteotoxicity in mice. Cell 139, 1157–1169 (2009).
Frakes, A. E. & Dillin, A. The UPRER: an indicator and coordinator of organismal homeostasis. Mol. Cell 66, 761–771 (2017).
Taylor, R. C. & Dillin, A. XBP-1 serves as a cell-nonautonomous modulator of stress resistance and lifespan. Cell 153, 1435–1447 (2013).
Calculli, G. et al. Systemic governance of mitochondria by germline proteostasis averts protein aggregation in the soma of C. elegans. Sci. Adv. 7, eabg3012 (2021).
Shin, J. Y. & Worman, H. J. Molecular pathology of laminopathies. Annu. Rev. Pathol. 17, 159–180 (2022).
Levine, A., Grushko, D. & Cohen, E. Gene expression modulation by the linker of nucleoskeleton and cytoskeleton complex contributes to proteostasis. Aging Cell 18, e13047 (2019).
Mediani, L. et al. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J. 38, e101341 (2019).
Frottin, F. et al. The nucleolus acts as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).
Tiku, V. et al. Small nucleoli serve as a cellular hallmark of longevity. Nat. Commun. 8, 16083 (2017).
Tjahjono, E., Revtovich, A. V. & Kirienko, N. V. Box C/D small nucleolar ribonucleoproteins modulate mitochondrial oversight and innate immunity. PLoS Genet. 18, e1010103 (2022).
Link, C. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 92, 9368–9372 (1995).
Volovik, Y., Marques, F. C. & Cohen, E. The nematode Caenorhabditis elegans: an adaptable model for examining proteotoxicity and aging. Methods 68, 458–464 (2014).
Shemesh, N., Shai, N. & Ben-Zvi, A. Germline stem cell stasis stops the decline of somatic proteostasis during early Caenorhabditis elegans adulthood. Aging Cell 12, 814–822 (2013).
Moll, L. et al. The insulin/IGF signaling pathway influences SUMOylation to modulate aging and proteostasis in Caenorhabditis elegans. eLife 7, e38635 (2018).
Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The dynamic threshold for polyglutamine-expansion protein aggregation and cellular toxicity is affected by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).
Brignull, H. R., Moore, F. E., Tang, S. J. & Morimoto, R. I. Polyglutamine proteins at the pathogenic threshold demonstrate neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J. Neurosci. 26, 7597–7606 (2006).
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Characteristics of aging: a proliferating realm. Cell 186, 243–278 (2023).
McGee, M. D., Day, N., Graham, J. & Melov, S. cep-1/p53-dependent dysplastic pathology of the aging C. elegans gonad. Aging 4, 256–269 (2012).
Hajnal, A. & Berset, T. The C. elegans MAPK phosphatase LIP-1 is essential for the G(2)/M meiotic arrest of developing oocytes. EMBO J. 21, 4317–4326 (2002).
Ermolaeva, M. A. et al. DNA damage within germ cells induces an innate immune mechanism that prompts systemic stress resilience. Nature 501, 416–420 (2013).
Cha, D. S., Datla, U. S., Hollis, S. E., Kimble, J. & Lee, M. H. The Ras-ERK MAPK regulatory network modulates dedifferentiation in Caenorhabditis elegans germline. Biochim. Biophys. Acta 1823, 1847–1855 (2012).
Chen, D. et al. Germline signaling influences the synergistically extended lifespan resulting from dual mutations in daf-2 and rsks-1 in C. elegans. Cell Rep. 5, 1600–1610 (2013).
Zheng, N. et al. Configuration of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).
Haque, R. et al. Human insulin influences alpha-synuclein aggregation through DAF-2/DAF-16 signaling pathway by opposing DAF-2 receptor in C. elegans model of Parkinson’s disease. Oncotarget 11, 634–649 (2020).
Ludewig, A. H., Klapper, M. & Doring, F. Recognizing evolutionarily conserved genes in the dietary restriction response utilizing bioinformatics followed by testing in Caenorhabditis elegans. Genes Nutr. 9, 363 (2014).
Roitenberg, N. et al. Modulation of caveolae by insulin/IGF-1 signaling alters aging in Caenorhabditis elegans. EMBO Rep. 19, e45673 (2018).
Volovik, Y. et al. Distinct regulation of the heat shock factor 1 and DAF-16 by neuronal nhl-1 in the nematode C. elegans. Cell Rep. 9, 2192–2205 (2014).
Labbadia, J. & Morimoto, R. I. Suppression of the heat shock response is a programmed process at the onset of reproduction. Mol. Cell 59, 639–650 (2015).
Noble, S. L., Allen, B. L., Goh, L. K., Nordick, K. & Evans, T. C. Maternal mRNAs are regulated by various P body-related mRNP granules during early Caenorhabditis elegans development. J. Cell Biol. 182, 559–572 (2008).
De-Souza, E. A., Thompson, M. A. & Taylor, R. C. Olfactory chemosensation prolongs lifespan through TGF-beta signaling and UPR activation. Nat. Aging 3, 938–947 (2023).
Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway that impacts C. elegans metabolism, reproductive maturity, and lifespan. Dev. Cell 1, 841–851 (2001).
Thatcher, J. D., Haun, C. & Okkema, P. G. The DAF-3 Smad interacts with DNA and inhibits gene expression in the Caenorhabditis elegans pharynx. Development 126, 97–107 (1999).
da Graca, L. S. et al. DAF-5 represents a Ski oncoprotein homologue that operates within a neuronal TGF beta pathway to modulate C. elegans dauer formation. Development 131, 435–446 (2004).
Thomas, J. H., Birnby, D. A. & Vowels, J. J. Indications of concurrent processing of sensory data regulating dauer formation in Caenorhabditis elegans. Genetics 134, 1105–1117 (1993).
Lee, M. K. et al. TGF-beta triggers Erk MAP kinase signaling via direct phosphorylation of ShcA. EMBO J. 26, 3957–3967 (2007).
Schackwitz, W. S., Inoue, T. & Thomas, J. H. Chemosensory neurons operate in parallel to mediate a pheromone response in C. elegans. Neuron 17, 719–728 (1996).
Estevez, M. et al. The daf-4 gene encodes a bone morphogenetic protein receptor regulating C. elegans dauer larval development. Nature 365, 644–649 (1993).
Meisel, J. D., Panda, O., Mahanti, P., Schroeder, F. C. & Kim, D. H. The chemosensory response to bacterial secondary metabolites influences neuroendocrine signaling and behavior in C. elegans. Cell 159, 267–280 (2014).
Ren, P. et al. A TGF-beta homolog’s neuronal expression regulates C. elegans larval development. Science 274, 1389–1391 (1996).
Grushko, D., Boocholez, H., Levine, A. & Cohen, E. The temporal roles of SKN-1/NRF as a modulator of lifespan and proteostasis in Caenorhabditis elegans. PLoS ONE 16, e0243522 (2021).
Barna, J. et al. The heat shock factor-1 integrates insulin/IGF-1, TGF-beta, and cGMP signaling pathways to influence development and aging. BMC Dev. Biol. 12, 32 (2012).
Vilchez, D. et al. RPN-6 influences C. elegans lifespan during proteotoxic stress situations. Nature 489, 263–268 (2012).
Segref, A., Torres, S. & Hoppe, T. A testable in vivo evaluation to investigate proteostasis systems in Caenorhabditis elegans. Genetics 187, 1235–1240 (2011).
Brunquell, J., Morris, S., Lu, Y., Cheng, F. & Westerheide, S. D. The genome-wide function of HSF-1 in the modulation of gene expression in Caenorhabditis elegans. BMC Genomics 17, 559 (2016).
Savage-Dunn, C. & Padgett, R. W. The TGF-beta family in Caenorhabditis elegans. Cold Spring Harb. Perspect. Biol. 9, a022178 (2017).
Krshnan, L., van de Weijer, M. L. & Carvalho, P. Protein degradation associated with the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 14, a041247 (2022).
Urano, F. et al. A survival route for Caenorhabditis elegans with an obstructed unfolded protein response. J. Cell Biol. 158, 639–646 (2002).
Maman, M. et al. A neuronal GPCR is essential for the initiation of the heat shock response in the nematode C. elegans. J. Neurosci. 33, 6102–6111 (2013).
Prahlad, V. & Morimoto, R. I. Neuronal circuits modulate the response of Caenorhabditis elegans to misfolded proteins. Proc. Natl Acad. Sci. USA 108, 14204–14209 (2011).
Boocholez, H. et al. Neuropeptide signaling and SKN-1 coordinate diverse responses of the proteostasis network to varying proteotoxic threats. Cell Rep. 38, 110350 (2022).
Frakes, A. E. et al. Four glial cells modulate ER stress resilience and lifespan through neuropeptide communication in C. elegans. Science 367, 436–440 (2020).
Teixeira-Castro, A. et al. Serotonergic communication diminishes ataxin 3 aggregation and neurotoxicity in animal models of Machado–Joseph disease. Brain 138, 3221–3237 (2015).
Tatum, M. C. et al. Neuronal serotonin discharge activates the heat shock response in C. elegans without a rise in temperature. Curr. Biol. 25, 163–174 (2015).
Hodge, F., Bajuszova, V. & van Oosten-Hawle, P. The gut as a tissue that supports lifespan and proteostasis through signaling. Front. Aging 3, 897741 (2022).
Park, D., Estevez, A. & Riddle, D. L. Opposing Smad transcription factors regulate the dauer/non-dauer transition in C. elegans. Development 137, 477–485 (2010).
Zhu, H. & Cohen, E. The neuronal system’s regulation of the proteostasis network. Front. Mol. Biosci. 10, 1290118 (2023).
Salminen, A., Kaarniranta, K. & Kauppinen, A. Insulin/IGF-1 signaling enhances immune suppression through the STAT3 pathway: effects on the aging process and age-associated diseases. Inflamm. Res. 70, 1043–1061 (2021).
O’Brien, D. et al. A response mediated by PQM-1 initiates transcellular chaperone signaling and modulates organismal proteostasis. Cell Rep. 23, 3905–3919 (2018).
Miles, J. et al. Transcellular chaperone signaling constitutes an intercellular stress-response separate from the HSF-1-mediated heat shock response. PLoS Biol. 21, e3001605 (2023).
Martin, M. Cutadapt eliminates adapter sequences from high-throughput sequencing reads. EMBnet J. (2011).
Kim, D. et al. TopHat2: precise alignment of transcriptomes in the presence of insertions, deletions, and gene fusions. Genome Biol. 14, R36 (2013).
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework for handling high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
This page has been generated programmatically, to view the article at its original site you can follow the link below:
https://www.nature.com/articles/s41556-024-01564-y
and if you wish to remove this article from our site please reach out to us