Unlocking the Nucleolar Secret: How a Hidden Mechanism Shapes Proteostasis through TGFβ/ERK Pathways


This page has been generated programmatically; to access the article in its original setting, you can follow the link below:
https://www.nature.com/articles/s41556-024-01564-y
and if you wish to have this article removed from our site, please get in touch with us


  • Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article
    CAS 
    PubMed 

    Google Scholar
     

  • Carvalhal Marques, F., Volovik, Y. & Cohen, E. The roles of cellular and organismal aging in the development of late-onset disorders. Annu. Rev. Pathol. 10, 1–23 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paulson, H. L. Protein destiny in neurodegenerative proteinopathies: polyglutamine disorders join the (mis)fold. Am. J. Hum. Genet. 64, 339–345 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, H. C. et al. Polyglutamine (PolyQ) disorders: from genetics to therapies. Cell Transplant. 23, 441–458 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Grøntvedt, G. R. et al. Alzheimer’s disease. Curr. Biol. 28, R645–R649 (2018).

    Publication 
    PubMed 

    Google Scholar
     

  • Sala Frigerio, C. et al. The principal risk factors for Alzheimer’s disease: age, gender, and genetics influence the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306.e6 (2019).

    Publication 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaducci, L. & Tesco, G. Aging as a significant threat for degenerative illnesses of the central nervous system. Curr. Opin. Neurol. 7, 283–286 (1994).

    Publication 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichel, W. The science of aging. J. Am. Geriatr. Soc. 14, 431–436 (1966).

    Publication 
    CAS 
    PubMed 

    Google Scholar
     

  • Soultoukis, G. A. & Partridge, L. Nutritional protein, metabolism, and aging. Annu. Rev. Biochem. 85, 5–34 (2016).

    Publication 
    CAS 
    PubMed“`html

    Google Scholar
     

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans variant that survives twice as long as the wild type. Nature 366, 461–464 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsin, H. & Kenyon, C. Signals emanating from the reproductive system influence the lifespan of C. elegans. Nature 399, 362–366 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Modifying proteostasis for medical intervention. Science 319, 916–919 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The characteristics of aging. Cell 153, 1194–1217 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David, D. C. et al. Extensive protein aggregation as an intrinsic aspect of aging in C. elegans. PLoS Biol. 8, e1000450 (2010).

    “`

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinkraus, K. A. et al. Caloric restriction mitigates proteotoxicity and promotes longevity by an hsf-1-dependent pathway in Caenorhabditis elegans. Aging Cell 7, 394–404 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Contrasting functions safeguard against aging-related proteotoxicity. Science 313, 1604–1610 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gontier, G., George, C., Chaker, Z., Holzenberger, M. & Aid, S. Inhibiting IGF signaling in mature neurons alleviates Alzheimer’s disease pathology by promoting amyloid-beta clearance. J. Neurosci. 35, 11500–11513 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, E. et al. Diminished IGF-1 signaling postpones age-related proteotoxicity in mice. Cell 139, 1157–1169 (2009).

    Publication 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frakes, A. E. & Dillin, A. The UPRER: an indicator and coordinator of organismal homeostasis. Mol. Cell 66, 761–771 (2017).

    Publication 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, R. C. & Dillin, A. XBP-1 serves as a cell-nonautonomous modulator of stress resistance and lifespan. Cell 153, 1435–1447 (2013).

    Publication 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calculli, G. et al. Systemic governance of mitochondria by germline proteostasis averts protein aggregation in the soma of C. elegans. Sci. Adv. 7, eabg3012 (2021).

    Publication 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, J. Y. & Worman, H. J. Molecular pathology of laminopathies. Annu. Rev. Pathol. 17, 159–180 (2022).

    “`html
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levine, A., Grushko, D. & Cohen, E. Gene expression modulation by the linker of nucleoskeleton and cytoskeleton complex contributes to proteostasis. Aging Cell 18, e13047 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mediani, L. et al. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J. 38, e101341 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frottin, F. et al. The nucleolus acts as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiku, V. et al. Small nucleoli serve as a cellular hallmark of longevity. Nat. Commun. 8, 16083 (2017).

    Article 
    CAS 
    “““html
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tjahjono, E., Revtovich, A. V. & Kirienko, N. V. Box C/D small nucleolar ribonucleoproteins modulate mitochondrial oversight and innate immunity. PLoS Genet. 18, e1010103 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Link, C. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 92, 9368–9372 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volovik, Y., Marques, F. C. & Cohen, E. The nematode Caenorhabditis elegans: an adaptable model for examining proteotoxicity and aging. Methods 68, 458–464 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shemesh, N., Shai, N. & Ben-Zvi, A. Germline stem cell stasis stops the decline of somatic proteostasis during early Caenorhabditis elegans adulthood. Aging Cell 12, 814–822 (2013).

    Article 
    CAS 
    “““html
    PubMed 

    Google Scholar
     

  • Moll, L. et al. The insulin/IGF signaling pathway influences SUMOylation to modulate aging and proteostasis in Caenorhabditis elegans. eLife 7, e38635 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The dynamic threshold for polyglutamine-expansion protein aggregation and cellular toxicity is affected by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brignull, H. R., Moore, F. E., Tang, S. J. & Morimoto, R. I. Polyglutamine proteins at the pathogenic threshold demonstrate neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J. Neurosci. 26, 7597–7606 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Characteristics of aging: a proliferating realm. Cell 186, 243–278 (2023).

    “`Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGee, M. D., Day, N., Graham, J. & Melov, S. cep-1/p53-dependent dysplastic pathology of the aging C. elegans gonad. Aging 4, 256–269 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajnal, A. & Berset, T. The C. elegans MAPK phosphatase LIP-1 is essential for the G(2)/M meiotic arrest of developing oocytes. EMBO J. 21, 4317–4326 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ermolaeva, M. A. et al. DNA damage within germ cells induces an innate immune mechanism that prompts systemic stress resilience. Nature 501, 416–420 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha, D. S., Datla, U. S., Hollis, S. E., Kimble, J. & Lee, M. H. The Ras-ERK MAPK regulatory network modulates dedifferentiation in Caenorhabditis elegans germline. Biochim. Biophys. Acta 1823, 1847–1855 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Chen, D. et al. Germline signaling influences the synergistically extended lifespan resulting from dual mutations in daf-2 and rsks-1 in C. elegans. Cell Rep. 5, 1600–1610 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zheng, N. et al. Configuration of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article
    CAS
    PubMed

    Google Scholar

  • Haque, R. et al. Human insulin influences alpha-synuclein aggregation through DAF-2/DAF-16 signaling pathway by opposing DAF-2 receptor in C. elegans model of Parkinson’s disease. Oncotarget 11, 634–649 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Ludewig, A. H., Klapper, M. & Doring, F. Recognizing evolutionarily conserved genes in the dietary restriction response utilizing bioinformatics followed by testing in Caenorhabditis elegans. Genes Nutr. 9, 363 (2014).

    “`html
    Article 
    PubMed 

    Google Scholar
     

  • Roitenberg, N. et al. Modulation of caveolae by insulin/IGF-1 signaling alters aging in Caenorhabditis elegans. EMBO Rep. 19, e45673 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volovik, Y. et al. Distinct regulation of the heat shock factor 1 and DAF-16 by neuronal nhl-1 in the nematode C. elegans. Cell Rep. 9, 2192–2205 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labbadia, J. & Morimoto, R. I. Suppression of the heat shock response is a programmed process at the onset of reproduction. Mol. Cell 59, 639–650 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noble, S. L., Allen, B. L., Goh, L. K., Nordick, K. & Evans, T. C. Maternal mRNAs are regulated by various P body-related mRNP granules during early Caenorhabditis elegans development. J. Cell Biol. 182, 559–572 (2008).

    “““html
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De-Souza, E. A., Thompson, M. A. & Taylor, R. C. Olfactory chemosensation prolongs lifespan through TGF-beta signaling and UPR activation. Nat. Aging 3, 938–947 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway that impacts C. elegans metabolism, reproductive maturity, and lifespan. Dev. Cell 1, 841–851 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thatcher, J. D., Haun, C. & Okkema, P. G. The DAF-3 Smad interacts with DNA and inhibits gene expression in the Caenorhabditis elegans pharynx. Development 126, 97–107 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Graca, L. S. et al. DAF-5 represents a Ski oncoprotein homologue that operates within a neuronal TGF beta pathway to modulate C. elegans dauer formation. Development 131, 435–446 (2004).

    “`Article 
    PubMed 

    Google Scholar
     

  • Thomas, J. H., Birnby, D. A. & Vowels, J. J. Indications of concurrent processing of sensory data regulating dauer formation in Caenorhabditis elegans. Genetics 134, 1105–1117 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. K. et al. TGF-beta triggers Erk MAP kinase signaling via direct phosphorylation of ShcA. EMBO J. 26, 3957–3967 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schackwitz, W. S., Inoue, T. & Thomas, J. H. Chemosensory neurons operate in parallel to mediate a pheromone response in C. elegans. Neuron 17, 719–728 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estevez, M. et al. The daf-4 gene encodes a bone morphogenetic protein receptor regulating C. elegans dauer larval development. Nature 365, 644–649 (1993).

    Article 
    CAS“`html
    PubMed

    Google Scholar

  • Meisel, J. D., Panda, O., Mahanti, P., Schroeder, F. C. & Kim, D. H. The chemosensory response to bacterial secondary metabolites influences neuroendocrine signaling and behavior in C. elegans. Cell 159, 267–280 (2014).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ren, P. et al. A TGF-beta homolog’s neuronal expression regulates C. elegans larval development. Science 274, 1389–1391 (1996).

    Article
    CAS
    PubMed

    Google Scholar

  • Grushko, D., Boocholez, H., Levine, A. & Cohen, E. The temporal roles of SKN-1/NRF as a modulator of lifespan and proteostasis in Caenorhabditis elegans. PLoS ONE 16, e0243522 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Barna, J. et al. The heat shock factor-1 integrates insulin/IGF-1, TGF-beta, and cGMP signaling pathways to influence development and aging. BMC Dev. Biol. 12, 32 (2012).

    Article
    CAS
    “`PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilchez, D. et al. RPN-6 influences C. elegans lifespan during proteotoxic stress situations. Nature 489, 263–268 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Segref, A., Torres, S. & Hoppe, T. A testable in vivo evaluation to investigate proteostasis systems in Caenorhabditis elegans. Genetics 187, 1235–1240 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunquell, J., Morris, S., Lu, Y., Cheng, F. & Westerheide, S. D. The genome-wide function of HSF-1 in the modulation of gene expression in Caenorhabditis elegans. BMC Genomics 17, 559 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage-Dunn, C. & Padgett, R. W. The TGF-beta family in Caenorhabditis elegans. Cold Spring Harb. Perspect. Biol. 9, a022178 (2017).

    ArticlePubMed 
    PubMed Central 

    Google Scholar
     

  • Krshnan, L., van de Weijer, M. L. & Carvalho, P. Protein degradation associated with the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 14, a041247 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urano, F. et al. A survival route for Caenorhabditis elegans with an obstructed unfolded protein response. J. Cell Biol. 158, 639–646 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maman, M. et al. A neuronal GPCR is essential for the initiation of the heat shock response in the nematode C. elegans. J. Neurosci. 33, 6102–6111 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prahlad, V. & Morimoto, R. I. Neuronal circuits modulate the response of Caenorhabditis elegans to misfolded proteins. Proc. Natl Acad. Sci. USA 108, 14204–14209 (2011).

    “`html
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boocholez, H. et al. Neuropeptide signaling and SKN-1 coordinate diverse responses of the proteostasis network to varying proteotoxic threats. Cell Rep. 38, 110350 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frakes, A. E. et al. Four glial cells modulate ER stress resilience and lifespan through neuropeptide communication in C. elegans. Science 367, 436–440 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teixeira-Castro, A. et al. Serotonergic communication diminishes ataxin 3 aggregation and neurotoxicity in animal models of Machado–Joseph disease. Brain 138, 3221–3237 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tatum, M. C. et al. Neuronal serotonin discharge activates the heat shock response in C. elegans without a rise in temperature. Curr. Biol. 25, 163–174 (2015).

    “`Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodge, F., Bajuszova, V. & van Oosten-Hawle, P. The gut as a tissue that supports lifespan and proteostasis through signaling. Front. Aging 3, 897741 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, D., Estevez, A. & Riddle, D. L. Opposing Smad transcription factors regulate the dauer/non-dauer transition in C. elegans. Development 137, 477–485 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, H. & Cohen, E. The neuronal system’s regulation of the proteostasis network. Front. Mol. Biosci. 10, 1290118 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salminen, A., Kaarniranta, K. & Kauppinen, A. Insulin/IGF-1 signaling enhances immune suppression through the STAT3 pathway: effects on the aging process and age-associated diseases. Inflamm. Res. 70, 1043–1061 (2021).

    “`html
    Article
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, D. et al. A response mediated by PQM-1 initiates transcellular chaperone signaling and modulates organismal proteostasis. Cell Rep. 23, 3905–3919 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miles, J. et al. Transcellular chaperone signaling constitutes an intercellular stress-response separate from the HSF-1-mediated heat shock response. PLoS Biol. 21, e3001605 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt eliminates adapter sequences from high-throughput sequencing reads. EMBnet J. (2011).

    Article 

    Google Scholar
     

  • Kim, D. et al. TopHat2: precise alignment of transcriptomes in the presence of insertions, deletions, and gene fusions. Genome Biol. 14, R36 (2013).

    “`Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework for handling high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • This page has been generated programmatically, to view the article at its original site you can follow the link below:
    https://www.nature.com/articles/s41556-024-01564-y
    and if you wish to remove this article from our site please reach out to us

    Leave a Reply

    Your email address will not be published. Required fields are marked *