This webpage was generated automatically, to view the article in its initial source you can visit the link below:
https://www.nature.com/articles/s43247-024-01960-0
and should you wish to have this article removed from our website please reach out to us
Wallmann, K. et al. The worldwide repository of methane hydrate in marine sediments: a conceptual framework. Energies 5, 2449–2498 (2012).
Egger, M., Riedinger, N., Mogollón, J. M. & Jørgensen, B. B. Global diffusive emissions of methane in marine sediments. Nat. Geosci. 11, 421–425 (2018).
Sun, X. & Turchyn, A. V. Notable contribution of authigenic carbonate to marine carbon sequestration. Nat. Geosci. 7, 201–204 (2014).
Stakes, D. S., Orange, D., Paduan, J. B., Salamy, K. A. & Maher, N. Cold seeps and authigenic carbonate generation in Monterey Bay, California. Mar. Geol. 159, 93–109 (1999).
Peckmann, J. et al. Carbonates derived from methane and authigenic pyrite in the northwestern Black Sea. Mar. Geol. 177, 129–150 (2001).
Marlow, J. J. et al. Microbial populations found in carbonate habitats are prolific and widespread methane oxidizers at geologically varied marine methane seep locations. Proc. Natl. Acad. Sci. USA 118, 1–11 (2021).
Michaelis, W. et al. Microbial reefs in the Black Sea powered by anaerobic methane oxidation. Science 297, 1013–1015 (2002).
Marlow, J. J. et al. Carbonate-hosted methanotrophy signifies an unrecognized methane sink in the deep ocean. Nat. Comm. 5, 5094 (2014).
Zwicker, J. et al. Rare earth elements as indicators of microbial activity and early diagenesis: A fresh outlook from carbonate cements of ancient methane-seep deposits. Chem. Geol. 501, 77–85 (2018).
Hryniewicz, K. Ancient hydrocarbon seeps globally. 571–647. In: Kaim, A., Cochran, J. K. & Landman, N. H. (eds) Ancient hydrocarbon seeps. Springer, Topics in Geobiology, 53. (2022).
Smrzka, D. et al. Fossilized large sulfide-oxidizing bacteria from the Devonian Hollard Mound seep deposit, Morocco. Geobiology 22, e12581 (2024).
Luff, R. & Wallmann, K. Computational modeling of the formation of carbonate crust at cold vent locations: implications for fluid and methane balances and chemosynthetic biological communities. Earth Planet. Sci. Lett. 221, 337–353 (2004).
Luff, R. & Wallmann, K. Fluid dynamics, methane fluxes, carbonate deposition and biogeochemical cycling in gas hydrate-bearing sediments located at Hydrate Ridge, Cascadia Margin: numerical simulations and mass balances. Geochim. Cosmochim. Acta 67, 3403–3421 (2003).
Bayon, G., Henderson, G. M. & Bohn, M. U–Th stratigraphy of cold seep carbonate crust. Chem. Geol. 260, 47–56 (2009).
Smrzka, D. et al. Hydrocarbon seepage and carbonate development: A case analysis from the southern Gulf of Mexico. Sedimentology 66, 2318–2353 (2019).
Dupraz, C. et al. Mechanisms of carbonate precipitation in contemporary microbial mats. Earth-Sci. Rev. 96, 141–162 (2009).
Couradeau, E. et al. Cyanobacterial calcification in contemporary microbialites at the submicrometer scale. Biogeosciences 10, 5255–5266 (2013).
Li, X. et al. Spatial distributions of carbonate biomineralization in biofilms. Appl. Environ. Microbiol. 81, 7403–7410 (2015).
“`html
Bouton, A. et al. External influences on the distribution, structure and mineralization of contemporary microbial mats in a coastal hypersaline lagoon, Cayo Coco (Cuba). Sedimentology 63, 972–1016 (2016).
Pace, A. et al. Development of stromatolite layers at the boundary of oxygenic–anoxygenic photosynthesis. Geobiology 16, 378–398 (2018).
Tseng, Y. et al. Autogenic carbonate deposition at Yam Seep influenced by persistent fracturing and uplift of Four-Way Closure Ridge off SW Taiwan. Geochem. Geophys. Geosys. 24. (2023).
Paull, C. K. et al. Indicators of carbonate deposits derived from methane and chemosynthetic organic carbon reserves: Illustrations from the Florida escarpment. Palaios 7, 361–375 (1992).
Ritger, R. S., Carson, B. & Suess, E. Authigenic carbonates from methane formed by subduction-driven pore-water expulsion along the Oregon/Washington margin. Geol. Soc. Am. Bull. 98, 147–156 (1987).
Blumenberg, M., Seifert, R., Reitner, J., Pape, T. & Michaelis, W. Membrane lipid compositions characterize specific anaerobic methanotrophic communities. Proc. Natl. Acad. Sci. USA 101, 1111–1116 (2004).
Niemann, H. & Elvert, M. Lipid biomarkers and stable carbon isotope signatures in microbial communities that facilitate the anaerobic methane oxidation coupled with sulphate. Org. Geochem. 39, 1668–1677 (2008).
Krake, N. et al. Molecular and isotopic indicators of oil-fueled bacterial sulfate reduction witnessed at seeps in the southern Gulf of Mexico. Chem. Geol. 595, 120797 (2022).
Hagemann, A., Leefmann, T., Peckmann, J., Hoffmann, V.-E. & Thiel, V. Biomarkers from separate carbonate phases of an Oligocene cold-seep deposit, Washington State, USA. Lethaia 46, 7–18 (2012).
Leefmann, T. et al. Compact biosignature analysis indicates consequences for the development of cold seep carbonates at Hydrate Ridge (off Oregon, USA). Biogeosciences 5, 731–738 (2008).
Himmler, T. et al. Extended post-glacial hydrocarbon seepage in the Barents Sea uncovered through U–Th dating of seep carbonates. Front. Earth Sci. 12. (2024).
Beauchamp, B. & Savard, M. Chemosynthetic carbonate mounds from the Cretaceous period in the Canadian Arctic. Palaios 7, 434–450 (1992).
Bradbury, H. J., Halloran, K. H., Lin, C. Y. & Turchyn, A. V. Fractionation of calcium isotopes during carbonate mineral precipitation induced by microbes. Geochim. Cosmochim. Acta 277, 37–51 (2020).
Gong S., Peckmann J., & Feng D. Stable isotope signatures from authigenic minerals in methane seeps. In: South China Sea Seeps (Eds D. Chen, D. Feng), Springer, Singapore, 149–170 (2023a).
Henderson, G. M., Chu, N.-C., Bayon, G. & Benoit, M. δ44/42 Ca found in gas hydrates, porewaters, and authigenic carbonates from Niger Delta sediments. Geochim. Cosmochim. Acta Suppl. 70, A244 (2006).
Teichert, B. M. A., Gussone, N. & Torres, M. E. Factors influencing calcium isotope fractionation in sedimentary porewaters. Earth Planet. Sci. Lett. 279, 373–382 (2009).
Gong, S. et al. Calcium isotopic fractionation during the precipitation of aragonite and high-Mg calcite at methane seeps. Earth Planet. Sci. Lett. 622, article 118419 (2023b).
Tang, J., Dietzel, M., Böhm, F., Kohler, S. J. & Eisenhauer, A. Sr2+/Ca2+ and 44Ca/40Ca fractionation during the formation of inorganic calcite: II. Ca isotopes. Geochim. Cosmochim. Acta 72, 3733–3745 (2008).
Blättler, C. L., Hong, W.-L., Kirsimäe, K., Higgins, J. A. & Lepland, A. Minor calcium isotope fractionation at low precipitation rates in methane seep authigenic carbonates. Geochim. Cosmochim. Acta 298, 227–239 (2021).
Roberts, J. A., Bennett, P. C., Gonzalez, L. A., Macpherson, G. L. & Miliken, K. L. Microbial precipitation of dolomite in methanogenic groundwater. Geology 32, 277–280 (2004).
Braissant, O. et al. Exopolymeric substances produced by sulfate-reducing bacteria: Interactions with calcium under alkaline conditions and implications for the generation of carbonate minerals. Geobiology 5, 401–411 (2007).
Braissant, O. et al. Properties and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol. Ecol. 67, 293–307 (2009).
Cai, W.-J. & Reimers, C. E. The creation of pH and pCO2 microelectrodes for examining the carbonate chemistry of pore waters adjacent to the sediment-water interface. Limnol. Oceanogr. 38, 1762–1773 (1993).
Marion, G. M. et al. A. pH of seawater. Mar. Chem. 126, 89–96 (2011).
Dupraz, C. & Visscher, P. T. Microbial lithification in marine stromatolites and hypersaline mats. TRENDS Microbiol. 13, 429–438 (2005).
Meyers, J. H. Marine vadose beachrock cementation via cryptocrystalline magnesian calcite, Maui, Hawaii. J. Sed. Res. 57, 558–570 (1987).
Braithwaite, C. J. R. & Montaggioni, L. F. The Great Barrier Reef: a 700,000 year diagenetic narrative. Sedimentology 56, 1591–1622 (2009).
Bradbury, H. J. & Turchyn, A. V. Reassessing the carbon sink attributable to sedimentary carbonate generation in contemporary marine sediments. Earth Planet. Sci. Lett. 519, 40–49 (2019).
Akam, S. A., Swanner, E. D., Yao, H., Hong, W.-L. & Peckmann, J. Methane-origin authigenic carbonates – A proposition for a universally pertinent marine carbonate establishment. Earth-Sci. Rev. 243, article 104487 (2023).
Hu, Y. et al. Measuring the degree of authigenic carbonate development in shallow marine sediments via a connection between carbonate precipitation rate and sulfate flux. Geophys. Res. Lett. 50, article e2023GL104296 (2023).
Wallmann, K., Geilert, S. & Scholz, F. Chemical modification of riverine particles in seawater and marine sediments: impacts on seawater composition and atmospheric CO2. Am J. Sci. 323, 7 (2023).
Torres, M. et al. Silicate weathering in anoxic marine sediments as a prerequisite for authigenic carbonate burial. Earth-Sc. Rev. 200, article 102960 (2020).
Wefing, A.-M. et al. High accuracy U-series dating of scleractinian cold-water corals via automated chromatographic extraction of U and Th. Chem. Geol. 475, 140–148 (2017).
Kerber, I. K. et al. Concurrent U and Th isotope evaluations for 230Th/U-dating utilizing MCICPMS. Nuclear Inst. Methods Physics Res. B 539, 169–178 (2023).
Cheng, H. et al. Enhancements in 230Th dating, 230Th and 234U half-life values, alongside U–Th isotopic measurements through multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).
Okubo, A., Obata, H., Gamo, T., Minami, H. & Yamada, M. Scavenging of 230Th in the Sulu Sea. Deep-Sea Res. II: Topical Studies Oceanogr 54, 1–2 (2007).
Thiel, V. et al. Highly isotopically depleted isoprenoids: molecular indicators for ancient methane emissions. Geochim. Cosmochim. Acta 63, 3959–3966 (1999).
Brazier, J.-M., Schmitt, A.-D., Gangloff, S., Chabaux, F. & Tertre, E. Calcium isotopic fractionation during adsorption and desorption on common soil phyllosilicates. Geochim. Cosmochim. Acta 250, 324–347 (2016).
Schmitt, A.-D. et al. Calcium isotope fractionation throughout plant development under restricted nutrient availability. Geochim. Cosmochim. Acta 110, 70–83 (2013).
Lehn, G. O., Jacobson, A. D. & Holmden, C. Accurate evaluation of Ca isotope ratios (δ44/40Ca) employing an enhanced 43Ca–42Ca double-spike MC-TIMS approach. Int. J. Mass Spectr. 351, 69–75 (2013).
Hippler, D. et al. Calcium isotopic characteristics of diverse reference materials and seawater. Geostand. Newslett. 27, 13–19 (2003).
Eisenhauer, A. et al. Recommendation for international consensus on Ca notation resulting from conversations at workshops regarding stable isotope measurements conducted in Davos (Goldschmidt 2002) and Nice (EGS-AGU-EUG 2003). Geostand. Geoanal. Res. 28, 149–151 (2004).
Heuser A. Medical Usage of Ca Stable Isotopes. In: Calcium Stable Isotope Geochemistry (eds. N. Gussone, et al.). Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg, pp. 247–260 (2016).
This page was generated programmatically; to view the article in its original location, follow the link below:
https://www.nature.com/articles/s43247-024-01960-0
and if you wish to remove this article from our site, please get in touch with us