“Unlocking the Ocean’s Secrets: How Microbial Marvels Boost Carbon Burial at Hydrocarbon Seeps”


This webpage was generated automatically, to view the article in its initial source you can visit the link below:
https://www.nature.com/articles/s43247-024-01960-0
and should you wish to have this article removed from our website please reach out to us


  • Wallmann, K. et al. The worldwide repository of methane hydrate in marine sediments: a conceptual framework. Energies 5, 2449–2498 (2012).

    Article

    Google Scholar

  • Egger, M., Riedinger, N., Mogollón, J. M. & Jørgensen, B. B. Global diffusive emissions of methane in marine sediments. Nat. Geosci. 11, 421–425 (2018).

    Article

    Google Scholar

  • Sun, X. & Turchyn, A. V. Notable contribution of authigenic carbonate to marine carbon sequestration. Nat. Geosci. 7, 201–204 (2014).

    Article

    Google Scholar

  • Stakes, D. S., Orange, D., Paduan, J. B., Salamy, K. A. & Maher, N. Cold seeps and authigenic carbonate generation in Monterey Bay, California. Mar. Geol. 159, 93–109 (1999).

    Article

    Google Scholar

  • Peckmann, J. et al. Carbonates derived from methane and authigenic pyrite in the northwestern Black Sea. Mar. Geol. 177, 129–150 (2001).

    Article

    Google Scholar

  • Marlow, J. J. et al. Microbial populations found in carbonate habitats are prolific and widespread methane oxidizers at geologically varied marine methane seep locations. Proc. Natl. Acad. Sci. USA 118, 1–11 (2021).

    Article
    Google Scholar

  • Michaelis, W. et al. Microbial reefs in the Black Sea powered by anaerobic methane oxidation. Science 297, 1013–1015 (2002).

    Article

    Google Scholar

  • Marlow, J. J. et al. Carbonate-hosted methanotrophy signifies an unrecognized methane sink in the deep ocean. Nat. Comm. 5, 5094 (2014).

    Article

    Google Scholar

  • Zwicker, J. et al. Rare earth elements as indicators of microbial activity and early diagenesis: A fresh outlook from carbonate cements of ancient methane-seep deposits. Chem. Geol. 501, 77–85 (2018).

    Article

    Google Scholar

  • Hryniewicz, K. Ancient hydrocarbon seeps globally. 571–647. In: Kaim, A., Cochran, J. K. & Landman, N. H. (eds) Ancient hydrocarbon seeps. Springer, Topics in Geobiology, 53. (2022).

  • Smrzka, D. et al. Fossilized large sulfide-oxidizing bacteria from the Devonian Hollard Mound seep deposit, Morocco. Geobiology 22, e12581 (2024).

    Article

    Google Scholar

  • Luff, R. & Wallmann, K. Computational modeling of the formation of carbonate crust at cold vent locations: implications for fluid and methane balances and chemosynthetic biological communities. Earth Planet. Sci. Lett. 221, 337–353 (2004).

    Article
    Google Scholar
     

  • Luff, R. & Wallmann, K. Fluid dynamics, methane fluxes, carbonate deposition and biogeochemical cycling in gas hydrate-bearing sediments located at Hydrate Ridge, Cascadia Margin: numerical simulations and mass balances. Geochim. Cosmochim. Acta 67, 3403–3421 (2003).

    Article 

    Google Scholar
     

  • Bayon, G., Henderson, G. M. & Bohn, M. U–Th stratigraphy of cold seep carbonate crust. Chem. Geol. 260, 47–56 (2009).

    Article 

    Google Scholar
     

  • Smrzka, D. et al. Hydrocarbon seepage and carbonate development: A case analysis from the southern Gulf of Mexico. Sedimentology 66, 2318–2353 (2019).

    Article 

    Google Scholar
     

  • Dupraz, C. et al. Mechanisms of carbonate precipitation in contemporary microbial mats. Earth-Sci. Rev. 96, 141–162 (2009).

    Article 

    Google Scholar
     

  • Couradeau, E. et al. Cyanobacterial calcification in contemporary microbialites at the submicrometer scale. Biogeosciences 10, 5255–5266 (2013).

    Article 

    Google Scholar
     

  • Li, X. et al. Spatial distributions of carbonate biomineralization in biofilms. Appl. Environ. Microbiol. 81, 7403–7410 (2015).

    “`html

    Article 

    Google Scholar
     

  • Bouton, A. et al. External influences on the distribution, structure and mineralization of contemporary microbial mats in a coastal hypersaline lagoon, Cayo Coco (Cuba). Sedimentology 63, 972–1016 (2016).

    Article 

    Google Scholar
     

  • Pace, A. et al. Development of stromatolite layers at the boundary of oxygenic–anoxygenic photosynthesis. Geobiology 16, 378–398 (2018).

    Article 

    Google Scholar
     

  • Tseng, Y. et al. Autogenic carbonate deposition at Yam Seep influenced by persistent fracturing and uplift of Four-Way Closure Ridge off SW Taiwan. Geochem. Geophys. Geosys. 24. (2023).

  • Paull, C. K. et al. Indicators of carbonate deposits derived from methane and chemosynthetic organic carbon reserves: Illustrations from the Florida escarpment. Palaios 7, 361–375 (1992).

    Article 

    Google Scholar
     

  • Ritger, R. S., Carson, B. & Suess, E. Authigenic carbonates from methane formed by subduction-driven pore-water expulsion along the Oregon/Washington margin. Geol. Soc. Am. Bull. 98, 147–156 (1987).

    Article 

    Google Scholar
     

  • Blumenberg, M., Seifert, R., Reitner, J., Pape, T. & Michaelis, W. Membrane lipid compositions characterize specific anaerobic methanotrophic communities. Proc. Natl. Acad. Sci. USA 101, 1111–1116 (2004).

    Article 
    “““html
    Google Scholar

  • Niemann, H. & Elvert, M. Lipid biomarkers and stable carbon isotope signatures in microbial communities that facilitate the anaerobic methane oxidation coupled with sulphate. Org. Geochem. 39, 1668–1677 (2008).

    Article 
    Google Scholar

  • Krake, N. et al. Molecular and isotopic indicators of oil-fueled bacterial sulfate reduction witnessed at seeps in the southern Gulf of Mexico. Chem. Geol. 595, 120797 (2022).

  • Hagemann, A., Leefmann, T., Peckmann, J., Hoffmann, V.-E. & Thiel, V. Biomarkers from separate carbonate phases of an Oligocene cold-seep deposit, Washington State, USA. Lethaia 46, 7–18 (2012).

    Article 
    Google Scholar

  • Leefmann, T. et al. Compact biosignature analysis indicates consequences for the development of cold seep carbonates at Hydrate Ridge (off Oregon, USA). Biogeosciences 5, 731–738 (2008).

    Article 
    Google Scholar

  • Himmler, T. et al. Extended post-glacial hydrocarbon seepage in the Barents Sea uncovered through U–Th dating of seep carbonates. Front. Earth Sci. 12. (2024).

  • Beauchamp, B. & Savard, M. Chemosynthetic carbonate mounds from the Cretaceous period in the Canadian Arctic. Palaios 7, 434–450 (1992).

    Article 
    Google Scholar

  • Bradbury, H. J., Halloran, K. H., Lin, C. Y. & Turchyn, A. V. Fractionation of calcium isotopes during carbonate mineral precipitation induced by microbes. Geochim. Cosmochim. Acta 277, 37–51 (2020).

    “`Article 

    Google Scholar
     

  • Gong S., Peckmann J., & Feng D. Stable isotope signatures from authigenic minerals in methane seeps. In: South China Sea Seeps (Eds D. Chen, D. Feng), Springer, Singapore, 149–170 (2023a).

  • Henderson, G. M., Chu, N.-C., Bayon, G. & Benoit, M. δ44/42 Ca found in gas hydrates, porewaters, and authigenic carbonates from Niger Delta sediments. Geochim. Cosmochim. Acta Suppl. 70, A244 (2006).

    Article 

    Google Scholar
     

  • Teichert, B. M. A., Gussone, N. & Torres, M. E. Factors influencing calcium isotope fractionation in sedimentary porewaters. Earth Planet. Sci. Lett. 279, 373–382 (2009).

    Article 

    Google Scholar
     

  • Gong, S. et al. Calcium isotopic fractionation during the precipitation of aragonite and high-Mg calcite at methane seeps. Earth Planet. Sci. Lett. 622, article 118419 (2023b).

    Article 

    Google Scholar
     

  • Tang, J., Dietzel, M., Böhm, F., Kohler, S. J. & Eisenhauer, A. Sr2+/Ca2+ and 44Ca/40Ca fractionation during the formation of inorganic calcite: II. Ca isotopes. Geochim. Cosmochim. Acta 72, 3733–3745 (2008).

    Article 

    Google Scholar
     

  • Blättler, C. L., Hong, W.-L., Kirsimäe, K., Higgins, J. A. & Lepland, A. Minor calcium isotope fractionation at low precipitation rates in methane seep authigenic carbonates. Geochim. Cosmochim. Acta 298, 227–239 (2021).

    “`html
    Article 

    Google Scholar
     

  • Roberts, J. A., Bennett, P. C., Gonzalez, L. A., Macpherson, G. L. & Miliken, K. L. Microbial precipitation of dolomite in methanogenic groundwater. Geology 32, 277–280 (2004).

    Article 

    Google Scholar
     

  • Braissant, O. et al. Exopolymeric substances produced by sulfate-reducing bacteria: Interactions with calcium under alkaline conditions and implications for the generation of carbonate minerals. Geobiology 5, 401–411 (2007).

    Article 

    Google Scholar
     

  • Braissant, O. et al. Properties and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol. Ecol. 67, 293–307 (2009).

    Article 

    Google Scholar
     

  • Cai, W.-J. & Reimers, C. E. The creation of pH and pCO2 microelectrodes for examining the carbonate chemistry of pore waters adjacent to the sediment-water interface. Limnol. Oceanogr. 38, 1762–1773 (1993).

    Article 

    Google Scholar
     

  • Marion, G. M. et al. A. pH of seawater. Mar. Chem. 126, 89–96 (2011).

    Article 
    “““html

    Google Scholar

  • Dupraz, C. & Visscher, P. T. Microbial lithification in marine stromatolites and hypersaline mats. TRENDS Microbiol. 13, 429–438 (2005).

    Article

    Google Scholar

  • Meyers, J. H. Marine vadose beachrock cementation via cryptocrystalline magnesian calcite, Maui, Hawaii. J. Sed. Res. 57, 558–570 (1987).


    Google Scholar

  • Braithwaite, C. J. R. & Montaggioni, L. F. The Great Barrier Reef: a 700,000 year diagenetic narrative. Sedimentology 56, 1591–1622 (2009).

    Article

    Google Scholar

  • Bradbury, H. J. & Turchyn, A. V. Reassessing the carbon sink attributable to sedimentary carbonate generation in contemporary marine sediments. Earth Planet. Sci. Lett. 519, 40–49 (2019).

    Article

    Google Scholar

  • Akam, S. A., Swanner, E. D., Yao, H., Hong, W.-L. & Peckmann, J. Methane-origin authigenic carbonates – A proposition for a universally pertinent marine carbonate establishment. Earth-Sci. Rev. 243, article 104487 (2023).

    Article

    Google Scholar

  • Hu, Y. et al. Measuring the degree of authigenic carbonate development in shallow marine sediments via a connection between carbonate precipitation rate and sulfate flux. Geophys. Res. Lett. 50, article e2023GL104296 (2023).

    Article
    “`
    Google Scholar
     

  • Wallmann, K., Geilert, S. & Scholz, F. Chemical modification of riverine particles in seawater and marine sediments: impacts on seawater composition and atmospheric CO2. Am J. Sci. 323, 7 (2023).

  • Torres, M. et al. Silicate weathering in anoxic marine sediments as a prerequisite for authigenic carbonate burial. Earth-Sc. Rev. 200, article 102960 (2020).

    Article 

    Google Scholar
     

  • Wefing, A.-M. et al. High accuracy U-series dating of scleractinian cold-water corals via automated chromatographic extraction of U and Th. Chem. Geol. 475, 140–148 (2017).

    Article 

    Google Scholar
     

  • Kerber, I. K. et al. Concurrent U and Th isotope evaluations for 230Th/U-dating utilizing MCICPMS. Nuclear Inst. Methods Physics Res. B 539, 169–178 (2023).

    Article 

    Google Scholar
     

  • Cheng, H. et al. Enhancements in 230Th dating, 230Th and 234U half-life values, alongside U–Th isotopic measurements through multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371372, 82–91 (2013).

  • Okubo, A., Obata, H., Gamo, T., Minami, H. & Yamada, M. Scavenging of 230Th in the Sulu Sea. Deep-Sea Res. II: Topical Studies Oceanogr 54, 1–2 (2007).

  • Thiel, V. et al. Highly isotopically depleted isoprenoids: molecular indicators for ancient methane emissions. Geochim. Cosmochim. Acta 63, 3959–3966 (1999).

    Article 

    Google Scholar
     

  • Brazier, J.-M., Schmitt, A.-D., Gangloff, S., Chabaux, F. & Tertre, E. Calcium isotopic fractionation during adsorption and desorption on common soil phyllosilicates. Geochim. Cosmochim. Acta 250, 324–347 (2016).

    Article 

    Google Scholar
     

  • Schmitt, A.-D. et al. Calcium isotope fractionation throughout plant development under restricted nutrient availability. Geochim. Cosmochim. Acta 110, 70–83 (2013).

    Article 

    Google Scholar
     

  • Lehn, G. O., Jacobson, A. D. & Holmden, C. Accurate evaluation of Ca isotope ratios (δ44/40Ca) employing an enhanced 43Ca–42Ca double-spike MC-TIMS approach. Int. J. Mass Spectr. 351, 69–75 (2013).

    Article 

    Google Scholar
     

  • Hippler, D. et al. Calcium isotopic characteristics of diverse reference materials and seawater. Geostand. Newslett. 27, 13–19 (2003).

    Article 

    Google Scholar
     

  • Eisenhauer, A. et al. Recommendation for international consensus on Ca notation resulting from conversations at workshops regarding stable isotope measurements conducted in Davos (Goldschmidt 2002) and Nice (EGS-AGU-EUG 2003). Geostand. Geoanal. Res. 28, 149–151 (2004).

    Article 

    Google Scholar
     

  • Heuser A. Medical Usage of Ca Stable Isotopes. In: Calcium Stable Isotope Geochemistry (eds. N. Gussone, et al.). Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg, pp. 247–260 (2016).


  • This page was generated programmatically; to view the article in its original location, follow the link below:
    https://www.nature.com/articles/s43247-024-01960-0
    and if you wish to remove this article from our site, please get in touch with us

    Leave a Reply

    Your email address will not be published. Required fields are marked *