“Intensified Infernos: How Climate Change is Transforming Wildfires in the Iberian Peninsula”


This page was generated programmatically; to view the article at its original source, please follow the link below:
https://www.nature.com/articles/s41612-025-00906-3
and for any requests to have this article removed from our website, kindly reach out to us


  • Bowman, D. M. et al. Vegetation fires during the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article 

    Google Scholar
     

  • Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Effects of climate change on global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).

    Article 

    Google Scholar
     

  • Bowman, D. M. et al. The role of fire in Earth’s system. Science 324, 481–484 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Marlon, J. R. et al. Climate and anthropogenic effects on global biomass burning over the last two millennia. Nat. Geosci. 1, 697–702 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Senande-Rivera, M., Insua-Costa, D. & Miguez-Macho, G. Temporal and spatial increase of global wildland fire activity in relation to climate change. Nat. Commun. 13, 1208 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Turetsky, M. R. et al. Global susceptibility of peatlands to fire and carbon emissions. Nat. Geosci. 8, 11–14 (2015).

    Article 
    CAS 

    Google Scholar
     


  • Google Scholar

  • Randerson, J. T. et al. The influence of boreal forest fires on climate change. Science 314, 1130–1132 (2006).

    Article
    CAS

    Google Scholar

  • Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Establishing pyromes and global patterns of fire regimes. Proc. Natl Acad. Sci. 110, 6442–6447 (2013).

    Article
    CAS

    Google Scholar

  • Kelley, D. I. et al. How present-day bioclimatic and anthropogenic factors modify global fire patterns. Nat. Clim. Change 9, 690–696 (2019).

    Article

    Google Scholar

  • Bowd, E. J., Banks, S. C., Strong, C. L. & Lindenmayer, D. B. Prolonged effects of wildfires and logging on forest substrates. Nat. Geosci. 12, 113–118 (2019).

    Article
    CAS

    Google Scholar

  • Harrison, S. P. et al. Comprehending and simulating wildfire patterns: an ecological viewpoint. Environ. Res. Lett. 16, 125008 (2021).

    Article

    Google Scholar

  • Pellegrini, A. F. et al. The frequency of fire influences decadal variations in soil carbon and nitrogen along with ecosystem productivity. Nature 553, 194–198 (2018).

    Article
    CAS
    Google Scholar
     

  • Andela, N. et al. A decline in global burned area driven by human activity. Science 356, 1356–1362 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Johnston, F. H. et al. Projected global fatalities linked to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).

    Article 

    Google Scholar
     

  • Bowman, D. M. et al. Human vulnerability and response to globally extreme wildfire incidents. Nat. Ecol. Evol. 1, 0058 (2017).

    Article 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Scientific Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. vol. In Press (2021).

  • Reed, K. A., Stansfield, A. M., Wehner, M. F. & Zarzycki, C. M. Predicted attribution of human impact on Hurricane Florence. Sci. Adv. 6, eaaw9253 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Reed, K. A., Wehner, M. F. & Zarzycki, C. M. Linking extreme rainfall of the 2020 hurricane season to human-caused climate variation. Nat. Commun. 13, 1905 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eden, J. M., Wolter, K., Otto, F. E. L. & Oldenborgh, G. J. Multi-faceted attribution examination of severe precipitation in Boulder, Colorado. Environ. Res. Lett. 11, 124009 (2016).

    Article 

    Google Scholar
     

  • Eden, J. M. et al. Intense precipitation in the Netherlands: a case study of event attribution. Weather Clim. Extrem. 21, 90–101 (2018).

    Article 

    Google Scholar
     

  • Philip, S. Y. et al. Swift attribution study of the remarkable heat wave impacting the Pacific coast of the US and Canada in June 2021. Earth Syst. Dyn. 13, 1689–1713 (2022).

    Article 

    Google Scholar
     

  • González-Alemán, J. J. et al. Human-induced warming played a significant role in catalyzing the historic and devastating Mediterranean Derecho during Summer 2022. Bull. Am. Meteorol. Soc. 104, E1526–E1532 (2023).

    Article 

    Google Scholar
     

  • Jolly, W. M. et al. Climate-driven fluctuations in global wildfire risk from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global trends of interannual climate–fire associations. Glob. Change Biol. 24, 5164–5175 (2018).

    Article 

    Google Scholar
     

  • Ellis, T. M., Bowman, D. M., Jain, P., Flannigan, M. D. & Williamson, G. J. Worldwide surge in wildfire hazard owing to climate-induced reductions in fuel moistness. Glob. Change Biol. 28, 1544–1559 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z., Eden, J. M., Dieppois, B. & Blackett, M. A comprehensive perspective on recorded alterations in fire weather extremes: uncertainties and attribution to climate transformation. Clim. Change 173, 14 (2022).

    Article 

    Google Scholar
     

  • Jones, M. W. et al. Global and local patterns and factors affecting fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article 

    Google Scholar
     

  • Williams, A. P. & Abatzoglou, J. T. Recent developments and existing uncertainties regarding past and future climatic impacts on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).

    Article 

    Google Scholar
     

  • Shepherd, T. G. et al. Narratives: a different method for depicting uncertainty in the physical domains of climate change. Clim. Change 151, 555–571 (2018).

    Article 

    Google Scholar
     

  • Clarke, H. et al. Wildfires jeopardize global carbon reservoirs and population hubs due to escalating atmospheric water demand. Nat. Commun. 13, 7161 (2022).

    Article 
    CAS“`html

    Google Scholar
     

  • Williams, A. P. et al. Documented effects of human-induced climate change on wildfires in California. Earths Future 7, 892–910 (2019).

    Article 

    Google Scholar
     

  • Ruffault, J. et al. Enhanced probability of heat-triggered large wildfires in the Mediterranean region. Sci. Rep. 10, 13790 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Turco, M. et al. The critical influence of droughts on the occurrence of summer fires in Mediterranean Europe. Sci. Rep. 7, 1–10 (2017).

    Article 

    Google Scholar
     

  • Shepherd, T. G. Atmospheric circulation as an origin of unpredictability in climate change forecasts. Nat. Geosci. 7, 703–708 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z. et al. The greening of the Earth and its determinants. Nat. Clim. Change 6, 791–795 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M. et al. Reactivity of burnt area in Europe to climate change, atmospheric CO2 concentrations, and population: a comparative analysis of two fire-vegetation models. J. Geophys. Res. Biogeosciences 120, 2256–2272 (2015).

    Article 
    “““html

    Google Scholar
     

  • Pausas, J. G. & Keeley, J. E. Wildfires and global transformation. Front. Ecol. Environ. 19, 387–395 (2021).

    Article 

    Google Scholar
     

  • Allen, R. J., Gomez, J., Horowitz, L. W. & Shevliakova, E. Increased vegetation growth in the future due to elevated carbon dioxide levels may lead to heightened fire activity. Commun. Earth Environ. 5, 1–15 (2024).

    Article 

    Google Scholar
     

  • Turco, M. et al. Anthropogenic climate change effects intensify summer wildfires in California. Proc. Natl Acad. Sci. 120, e2213815120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Canadell, J. G. et al. The multi-decadal growth of forest burned area in Australia correlates with climate change. Nat. Commun. 12, 6921 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Turco, M. et al. Diminishing wildfires in Mediterranean Europe. PLoS One 11, e0150663 (2016).

    Article 

    Google Scholar
     

  • Giannaros, T. M., Kotroni, V. & Lagouvardos, K. Climatological and trend study (1987–2016) of fire weather across the Euro-Mediterranean region. Int. J. Climatol. 41, E491–E508 (2021).

    “`Article 

    Google Scholar
     

  • Turco, M. et al. Intensified fires in Mediterranean Europe attributable to human-induced warming projected using non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).

    Article 

    Google Scholar
     

  • Calheiros, T., Pereira, M. & Nunes, J. P. Evaluating the effects of upcoming climate shift on extreme fire weather and pyro-regions in the Iberian Peninsula. Sci. Total Environ. 754, 142233 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Turco, M. et al. Climatic factors influencing the catastrophic fires of 2017 in Portugal. Sci. Rep. 9, 13886 (2019).

    Article 

    Google Scholar
     

  • Rodrigues, M. et al. Factors and consequences of the severe 2022 wildfire season in Southern Europe. Sci. Total Environ. 859, 160320 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Teckentrup, L. et al. Reaction of modeled burned area to past variations in environmental and human factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pausas, J. G. & Paula, S. Fuel influences the fire–climate connection: findings from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 21, 1074–1082 (2012).

    Article 

    Google Scholar
     

  • Andrews, P. L. The Rothermel Surface Fire Spread Model and Associated Developments: A Detailed Explanation. (2018).

  • Jolly, W. M., Nemani, R. & Running, S. W. A comprehensive, bioclimatic metric to forecast foliar phenology in relation to climate. Glob. Change Biol. 11, 619–632 (2005).

    Article 

    Google Scholar
     

  • Piao, S. et al. Attributes, drivers and responses of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 

    Google Scholar
     

  • Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global rise of human-induced climate change in fire weather metrics. Geophys. Res. Lett. 46, 326–336 (2019).

    Article 

    Google Scholar
     

  • Jain, P., Castellanos-Acuna, D., Coogan, S. C., Abatzoglou, J. T. & Flannigan, M. D. Documented rises in extreme fire weather caused by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    Article 

    Google Scholar
     

  • Van Wagner, C. Formation and Framework of the Canadian Forest Fire Weather Index System. (1987).

  • Van Wagner, C. & Pickett, T. Formulas and FORTRAN Program for the Canadian Forest Fire Weather Index System. (1985).

  • Jiménez-Ruano, A., Rodrigues Mimbrero, M. & de la Riva Fernández, J. Investigating spatial–temporal dynamics of wildfire regime characteristics in mainland Spain. Nat. Hazards Earth Syst. Sci. 17, 1697–1711 (2017).

    Article 

    Google Scholar
     

  • Wotton, B. M., Flannigan, M. D. & Marshall, G. A. Possible climate change effects on fire intensity and crucial wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).

    Article 

    Google Scholar
     

  • Rodrigues, M., Alcasena, F. & Vega-García, C. Simulating initial attack efficacy of wildfire containment in Catalonia, Spain. Sci. Total Environ. 666, 915–927 (2019).

    Article 
    CAS 

    Google Scholar
     

  • San-Miguel-Ayanz, J., Moreno, J. M. & Camia, A. Evaluation of large wildfires in European Mediterranean ecosystems: Insights gained and outlook. Ecol. Manag. 294, 11–22 (2013).

    Article 

    Google Scholar
     

  • Podschwit, H. & Cullen, A. Trends and patterns in concurrent wildfire occurrences across the United States from 1984 to 2015. Int. J. Wildland Fire 29, 1057–1071 (2020).

    Article 

    Google Scholar
     

  • McGinnis, S. et al. Predicted regional increases in simultaneous large wildfires across the Western USA. Int. J. Wildland Fire 32, 1304–1314 (2023).

    Article
    Google Scholar
     

  • Damoah, R. et al. An examination of pyro-convection employing transport model and remote sensing information. Atmos. Chem. Phys. 6, 173–185 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Campos, C., Couto, F. T., Filippi, J.-B., Baggio, R. & Salgado, R. Simulating the pyro-convection effect during a mega-fire occurrence in Portugal. Atmos. Res 290, 106776 (2023).

    Article 

    Google Scholar
     

  • Peterson, D. A. et al. The 2013 Rim Fire: Consequences for forecasting rapid fire propagation, pyroconvection, and smoke discharge. Bull. Am. Meteorol. Soc. 96, 229–247 (2015).

    Article 

    Google Scholar
     

  • Peterson, D. A. et al. Thunderstorms induced by wildfires result in a volcano-like stratospheric smoke injection. Npj Clim. Atmos. Sci. 1, 1–8 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fromm, M., Servranckx, R., Stocks, B. J. & Peterson, D. A. Grasping the essential components of the pyrocumulonimbus storm ignited by intense wildland fire. Commun. Earth Environ. 3, 1–7 (2022).

    Article 

    Google Scholar
     

  • Fromm, M. et al. The hidden narrative of pyrocumulonimbus. Bull. Am. Meteorol. Soc. 91, 1193–1210 (2010).

    “`html
    Article 

    Google Scholar
     

  • Potter, B. E. Interactions in the atmosphere with wildland fire dynamics–II. Plume and vortex mechanics. Int. J. Wildland Fire 21, 802–817 (2012).

    Article 

    Google Scholar
     

  • McRae, R. H., Sharples, J. J. & Fromm, M. Connecting local wildfire behaviors to pyroCb progression. Nat. Hazards Earth Syst. Sci. 15, 417–428 (2015).

    Article 

    Google Scholar
     

  • Dowdy, A. J., Fromm, M. D. & McCarthy, N. Pyrocumulonimbus electrical activity and fire ignition during Black Saturday in southeast Australia. J. Geophys. Res. Atmospheres 122, 7342–7354 (2017).

    Article 

    Google Scholar
     

  • Peterson, D. A. et al. Australia’s Black Summer pyrocumulonimbus super eruption indicates a potential for increasingly severe stratospheric smoke incidents. Npj Clim. Atmos. Sci. 4, 1–16 (2021).

    Article 

    Google Scholar
     

  • Bedia, J. et al. Worldwide trends in the responsiveness of burned terrain to fire-weather: Consequences for climate change. Agric. Meteorol. 214, 369–379 (2015).

    Article 

    Google Scholar
     

  • “`

    El Garroussi, S., Di Giuseppe, F., Barnard, C. & Wetterhall, F. Europe confronts a tenfold surge in extreme wildfires due to a warming climate. Npj Clim. Atmos. Sci. 7, 1–11 (2024).

    Article 

    Google Scholar
     

  • Tejedor, E. et al. Recent heat waves as a precursor to climate extremes in the western Mediterranean area. Npj Clim. Atmos. Sci. 7, 1–7 (2024).

    Article 

    Google Scholar
     

  • Serrano-Notivoli, R. et al. Extraordinary warmth: An examination of Spain’s remarkable summer of 2022. Atmos. Res 293, 106931 (2023).

    Article 

    Google Scholar
     

  • Büntgen, U. et al. Current summer heat over the western Mediterranean region is unparalleled since medieval epochs. Glob. Planet. Change 232, 104336 (2024).

    Article 

    Google Scholar
     

  • Brotons, L., Aquilué, N., de Cáceres, M., Fortin, M.-J. & Fall, A. The influence of fire history, fire suppression strategies, and climate change on wildfire dynamics in Mediterranean Landscapes. PLOS ONE 8, e62392 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Moreno, M. V., Conedera, M., Chuvieco, E. & Pezzatti, G. B. Transformations in fire regimes and significant influencing factors in Spain from 1968 to 2010. Environ. Sci. Policy 37, 11–22 (2014).

    Article“`html

    Google Scholar
     

  • Ruffault, J. & Mouillot, F. In what way a novel fire-suppression policy can dramatically alter the fire-weather connection. Ecosphere 6, art199 (2015).

    Article 

    Google Scholar
     

  • Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Rising frequency and severity of the most severe wildfires on the planet. Nat. Ecol. Evol. 8, 1420–1425 (2024).

    Article 

    Google Scholar
     

  • Vicedo-Cabrera, A. M., Esplugues, A., Iñíguez, C., Estarlich, M. & Ballester, F. Effects on health from the 2012 Valencia (Spain) wildfires in children in a cohort analysis. Environ. Geochem. Health 38, 703–712 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cascio, W. E. Smoke from wildland fires and its impact on human health. Sci. Total Environ. 624, 586–595 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pacheco, R. M. & Claro, J. Defining the influence of wildfires on ecosystem services: a triangulation of scientific insights, governmental documents, and expert judgment in Portugal. Environ. Sci. Policy 142, 194–205 (2023).

    Article 

    Google Scholar
     

  • Nunes, J. P. et al. Afforestation, Subsequent
    “““html

    Forest Fires and Delivery of Hydrological Functions: a Model-Based Examination for a Mediterranean Mountainous Watershed. Land Degrad. Dev. 29, 776–788 (2018).

    Article

    Google Scholar

  • Moritz, M. A. et al. Adapting to coexist with wildfire. Nature 515, 58–66 (2014).

    Article
    CAS 

    Google Scholar

  • McWethy, D. B. et al. Reevaluating resilience to wildfire. Nat. Sustain. 2, 797–804 (2019).

    Article

    Google Scholar

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article

    Google Scholar

  • Riahi, K. et al. The shared socioeconomic trajectories and their energy, agrarian use, and greenhouse gas emissions outcomes: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article

    Google Scholar

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas levels and their prospects to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article
    CAS 

    Google Scholar

  • Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: justification and experimental setup. Geosci. Model Dev. 9, 2973–2998
    “`(2016).

    Article 

    Google Scholar
     

  • Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. (1972).

  • Nelson Jr, R. M. Assessment of diurnal variation in 10-h fuel stick moisture content. Can. J. Res. 30, 1071–1087 (2000).

    Article 

    Google Scholar
     

  • Carlson, J. D., Bradshaw, L. S., Nelson, R. M., Bensch, R. R. & Jabrzemski, R. Utilization of the Nelson model across four timelag fuel categories via Oklahoma field observations: model assessment and juxtaposition with National Fire Danger Rating System algorithms. Int. J. Wildland Fire 16, 204–216 (2007).

    Article 

    Google Scholar
     

  • Yebra, M. et al. Globe-LFMC, a worldwide plant water status repository for vegetation ecophysiology and wildfire initiatives. Sci. Data 6, 155 (2019).

    Article 

    Google Scholar
     

  • Aragoneses, E., García, M., Salis, M., Ribeiro, L. M. & Chuvieco, E. Categorization and cartography of European fuels applying a hierarchical, multipurpose fuel classification framework. Earth Syst. Sci. Data 15, 1287–1315 (2023).

    Article 

    Google Scholar
     

  • Scott, J. H. & Burgan, R. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model. (2005).

  • Brogli, R., Heim, C., Mensch, J., Sørland, S. L. & Schär, C. The pseudo-global-warming (PGW) framework: methodology, software suite PGW4ERA5 v1.1, validation, and sensitivity assessments. Geosci. Model Dev. 16, 907–926 (2023).

    Article 

    Google Scholar
     

  • Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Representative climate change scenarios for regional climate models. Geophys. Res. Lett. 23, 669–672 (1996).

    Article 

    Google Scholar
     


  • This page was generated programmatically. To view the article in its original setting, please follow the link below:
    https://www.nature.com/articles/s41612-025-00906-3
    if you wish to have this article removed from our site, please reach out to us

    Leave a Reply

    Your email address will not be published. Required fields are marked *