Categories: Science

“Intensified Infernos: How Climate Change is Transforming Wildfires in the Iberian Peninsula”


This page was generated programmatically; to view the article at its original source, please follow the link below:
https://www.nature.com/articles/s41612-025-00906-3
and for any requests to have this article removed from our website, kindly reach out to us


  • Bowman, D. M. et al. Vegetation fires during the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article 

    Google Scholar
     

  • Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Effects of climate change on global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).

    Article 

    Google Scholar
     

  • Bowman, D. M. et al. The role of fire in Earth’s system. Science 324, 481–484 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Marlon, J. R. et al. Climate and anthropogenic effects on global biomass burning over the last two millennia. Nat. Geosci. 1, 697–702 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Senande-Rivera, M., Insua-Costa, D. & Miguez-Macho, G. Temporal and spatial increase of global wildland fire activity in relation to climate change. Nat. Commun. 13, 1208 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Turetsky, M. R. et al. Global susceptibility of peatlands to fire and carbon emissions. Nat. Geosci. 8, 11–14 (2015).

    Article 
    CAS 

    Google Scholar
     


  • Google Scholar

  • Randerson, J. T. et al. The influence of boreal forest fires on climate change. Science 314, 1130–1132 (2006).

    Article
    CAS

    Google Scholar

  • Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Establishing pyromes and global patterns of fire regimes. Proc. Natl Acad. Sci. 110, 6442–6447 (2013).

    Article
    CAS

    Google Scholar

  • Kelley, D. I. et al. How present-day bioclimatic and anthropogenic factors modify global fire patterns. Nat. Clim. Change 9, 690–696 (2019).

    Article

    Google Scholar

  • Bowd, E. J., Banks, S. C., Strong, C. L. & Lindenmayer, D. B. Prolonged effects of wildfires and logging on forest substrates. Nat. Geosci. 12, 113–118 (2019).

    Article
    CAS

    Google Scholar

  • Harrison, S. P. et al. Comprehending and simulating wildfire patterns: an ecological viewpoint. Environ. Res. Lett. 16, 125008 (2021).

    Article

    Google Scholar

  • Pellegrini, A. F. et al. The frequency of fire influences decadal variations in soil carbon and nitrogen along with ecosystem productivity. Nature 553, 194–198 (2018).

    Article
    CAS
    Google Scholar
     

  • Andela, N. et al. A decline in global burned area driven by human activity. Science 356, 1356–1362 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Johnston, F. H. et al. Projected global fatalities linked to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).

    Article 

    Google Scholar
     

  • Bowman, D. M. et al. Human vulnerability and response to globally extreme wildfire incidents. Nat. Ecol. Evol. 1, 0058 (2017).

    Article 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Scientific Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. vol. In Press (2021).

  • Reed, K. A., Stansfield, A. M., Wehner, M. F. & Zarzycki, C. M. Predicted attribution of human impact on Hurricane Florence. Sci. Adv. 6, eaaw9253 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Reed, K. A., Wehner, M. F. & Zarzycki, C. M. Linking extreme rainfall of the 2020 hurricane season to human-caused climate variation. Nat. Commun. 13, 1905 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eden, J. M., Wolter, K., Otto, F. E. L. & Oldenborgh, G. J. Multi-faceted attribution examination of severe precipitation in Boulder, Colorado. Environ. Res. Lett. 11, 124009 (2016).

    Article 

    Google Scholar
     

  • Eden, J. M. et al. Intense precipitation in the Netherlands: a case study of event attribution. Weather Clim. Extrem. 21, 90–101 (2018).

    Article 

    Google Scholar
     

  • Philip, S. Y. et al. Swift attribution study of the remarkable heat wave impacting the Pacific coast of the US and Canada in June 2021. Earth Syst. Dyn. 13, 1689–1713 (2022).

    Article 

    Google Scholar
     

  • González-Alemán, J. J. et al. Human-induced warming played a significant role in catalyzing the historic and devastating Mediterranean Derecho during Summer 2022. Bull. Am. Meteorol. Soc. 104, E1526–E1532 (2023).

    Article 

    Google Scholar
     

  • Jolly, W. M. et al. Climate-driven fluctuations in global wildfire risk from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global trends of interannual climate–fire associations. Glob. Change Biol. 24, 5164–5175 (2018).

    Article 

    Google Scholar
     

  • Ellis, T. M., Bowman, D. M., Jain, P., Flannigan, M. D. & Williamson, G. J. Worldwide surge in wildfire hazard owing to climate-induced reductions in fuel moistness. Glob. Change Biol. 28, 1544–1559 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z., Eden, J. M., Dieppois, B. & Blackett, M. A comprehensive perspective on recorded alterations in fire weather extremes: uncertainties and attribution to climate transformation. Clim. Change 173, 14 (2022).

    Article 

    Google Scholar
     

  • Jones, M. W. et al. Global and local patterns and factors affecting fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article 

    Google Scholar
     

  • Williams, A. P. & Abatzoglou, J. T. Recent developments and existing uncertainties regarding past and future climatic impacts on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).

    Article 

    Google Scholar
     

  • Shepherd, T. G. et al. Narratives: a different method for depicting uncertainty in the physical domains of climate change. Clim. Change 151, 555–571 (2018).

    Article 

    Google Scholar
     

  • Clarke, H. et al. Wildfires jeopardize global carbon reservoirs and population hubs due to escalating atmospheric water demand. Nat. Commun. 13, 7161 (2022).

    Article 
    CAS“`html

    Google Scholar
     

  • Williams, A. P. et al. Documented effects of human-induced climate change on wildfires in California. Earths Future 7, 892–910 (2019).

    Article 

    Google Scholar
     

  • Ruffault, J. et al. Enhanced probability of heat-triggered large wildfires in the Mediterranean region. Sci. Rep. 10, 13790 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Turco, M. et al. The critical influence of droughts on the occurrence of summer fires in Mediterranean Europe. Sci. Rep. 7, 1–10 (2017).

    Article 

    Google Scholar
     

  • Shepherd, T. G. Atmospheric circulation as an origin of unpredictability in climate change forecasts. Nat. Geosci. 7, 703–708 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z. et al. The greening of the Earth and its determinants. Nat. Clim. Change 6, 791–795 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M. et al. Reactivity of burnt area in Europe to climate change, atmospheric CO2 concentrations, and population: a comparative analysis of two fire-vegetation models. J. Geophys. Res. Biogeosciences 120, 2256–2272 (2015).

    Article 
    “““html

    Google Scholar
     

  • Pausas, J. G. & Keeley, J. E. Wildfires and global transformation. Front. Ecol. Environ. 19, 387–395 (2021).

    Article 

    Google Scholar
     

  • Allen, R. J., Gomez, J., Horowitz, L. W. & Shevliakova, E. Increased vegetation growth in the future due to elevated carbon dioxide levels may lead to heightened fire activity. Commun. Earth Environ. 5, 1–15 (2024).

    Article 

    Google Scholar
     

  • Turco, M. et al. Anthropogenic climate change effects intensify summer wildfires in California. Proc. Natl Acad. Sci. 120, e2213815120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Canadell, J. G. et al. The multi-decadal growth of forest burned area in Australia correlates with climate change. Nat. Commun. 12, 6921 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Turco, M. et al. Diminishing wildfires in Mediterranean Europe. PLoS One 11, e0150663 (2016).

    Article 

    Google Scholar
     

  • Giannaros, T. M., Kotroni, V. & Lagouvardos, K. Climatological and trend study (1987–2016) of fire weather across the Euro-Mediterranean region. Int. J. Climatol. 41, E491–E508 (2021).

    “`Article 

    Google Scholar
     

  • Turco, M. et al. Intensified fires in Mediterranean Europe attributable to human-induced warming projected using non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).

    Article 

    Google Scholar
     

  • Calheiros, T., Pereira, M. & Nunes, J. P. Evaluating the effects of upcoming climate shift on extreme fire weather and pyro-regions in the Iberian Peninsula. Sci. Total Environ. 754, 142233 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Turco, M. et al. Climatic factors influencing the catastrophic fires of 2017 in Portugal. Sci. Rep. 9, 13886 (2019).

    Article 

    Google Scholar
     

  • Rodrigues, M. et al. Factors and consequences of the severe 2022 wildfire season in Southern Europe. Sci. Total Environ. 859, 160320 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Teckentrup, L. et al. Reaction of modeled burned area to past variations in environmental and human factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pausas, J. G. & Paula, S. Fuel influences the fire–climate connection: findings from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 21, 1074–1082 (2012).

    Article 

    Google Scholar
     

  • Andrews, P. L. The Rothermel Surface Fire Spread Model and Associated Developments: A Detailed Explanation. (2018).

  • Jolly, W. M., Nemani, R. & Running, S. W. A comprehensive, bioclimatic metric to forecast foliar phenology in relation to climate. Glob. Change Biol. 11, 619–632 (2005).

    Article 

    Google Scholar
     

  • Piao, S. et al. Attributes, drivers and responses of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 

    Google Scholar
     

  • Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global rise of human-induced climate change in fire weather metrics. Geophys. Res. Lett. 46, 326–336 (2019).

    Article 

    Google Scholar
     

  • Jain, P., Castellanos-Acuna, D., Coogan, S. C., Abatzoglou, J. T. & Flannigan, M. D. Documented rises in extreme fire weather caused by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    Article 

    Google Scholar
     

  • Van Wagner, C. Formation and Framework of the Canadian Forest Fire Weather Index System. (1987).

  • Van Wagner, C. & Pickett, T. Formulas and FORTRAN Program for the Canadian Forest Fire Weather Index System. (1985).

  • Jiménez-Ruano, A., Rodrigues Mimbrero, M. & de la Riva Fernández, J. Investigating spatial–temporal dynamics of wildfire regime characteristics in mainland Spain. Nat. Hazards Earth Syst. Sci. 17, 1697–1711 (2017).

    Article 

    Google Scholar
     

  • Wotton, B. M., Flannigan, M. D. & Marshall, G. A. Possible climate change effects on fire intensity and crucial wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).

    Article 

    Google Scholar
     

  • Rodrigues, M., Alcasena, F. & Vega-García, C. Simulating initial attack efficacy of wildfire containment in Catalonia, Spain. Sci. Total Environ. 666, 915–927 (2019).

    Article 
    CAS 

    Google Scholar
     

  • San-Miguel-Ayanz, J., Moreno, J. M. & Camia, A. Evaluation of large wildfires in European Mediterranean ecosystems: Insights gained and outlook. Ecol. Manag. 294, 11–22 (2013).

    Article 

    Google Scholar
     

  • Podschwit, H. & Cullen, A. Trends and patterns in concurrent wildfire occurrences across the United States from 1984 to 2015. Int. J. Wildland Fire 29, 1057–1071 (2020).

    Article 

    Google Scholar
     

  • McGinnis, S. et al. Predicted regional increases in simultaneous large wildfires across the Western USA. Int. J. Wildland Fire 32, 1304–1314 (2023).

    Article
    Google Scholar
     

  • Damoah, R. et al. An examination of pyro-convection employing transport model and remote sensing information. Atmos. Chem. Phys. 6, 173–185 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Campos, C., Couto, F. T., Filippi, J.-B., Baggio, R. & Salgado, R. Simulating the pyro-convection effect during a mega-fire occurrence in Portugal. Atmos. Res 290, 106776 (2023).

    Article 

    Google Scholar
     

  • Peterson, D. A. et al. The 2013 Rim Fire: Consequences for forecasting rapid fire propagation, pyroconvection, and smoke discharge. Bull. Am. Meteorol. Soc. 96, 229–247 (2015).

    Article 

    Google Scholar
     

  • Peterson, D. A. et al. Thunderstorms induced by wildfires result in a volcano-like stratospheric smoke injection. Npj Clim. Atmos. Sci. 1, 1–8 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fromm, M., Servranckx, R., Stocks, B. J. & Peterson, D. A. Grasping the essential components of the pyrocumulonimbus storm ignited by intense wildland fire. Commun. Earth Environ. 3, 1–7 (2022).

    Article 

    Google Scholar
     

  • Fromm, M. et al. The hidden narrative of pyrocumulonimbus. Bull. Am. Meteorol. Soc. 91, 1193–1210 (2010).

    “`html
    Article 

    Google Scholar
     

  • Potter, B. E. Interactions in the atmosphere with wildland fire dynamics–II. Plume and vortex mechanics. Int. J. Wildland Fire 21, 802–817 (2012).

    Article 

    Google Scholar
     

  • McRae, R. H., Sharples, J. J. & Fromm, M. Connecting local wildfire behaviors to pyroCb progression. Nat. Hazards Earth Syst. Sci. 15, 417–428 (2015).

    Article 

    Google Scholar
     

  • Dowdy, A. J., Fromm, M. D. & McCarthy, N. Pyrocumulonimbus electrical activity and fire ignition during Black Saturday in southeast Australia. J. Geophys. Res. Atmospheres 122, 7342–7354 (2017).

    Article 

    Google Scholar
     

  • Peterson, D. A. et al. Australia’s Black Summer pyrocumulonimbus super eruption indicates a potential for increasingly severe stratospheric smoke incidents. Npj Clim. Atmos. Sci. 4, 1–16 (2021).

    Article 

    Google Scholar
     

  • Bedia, J. et al. Worldwide trends in the responsiveness of burned terrain to fire-weather: Consequences for climate change. Agric. Meteorol. 214, 369–379 (2015).

    Article 

    Google Scholar
     

  • “`

    El Garroussi, S., Di Giuseppe, F., Barnard, C. & Wetterhall, F. Europe confronts a tenfold surge in extreme wildfires due to a warming climate. Npj Clim. Atmos. Sci. 7, 1–11 (2024).

    Article 

    Google Scholar
     

  • Tejedor, E. et al. Recent heat waves as a precursor to climate extremes in the western Mediterranean area. Npj Clim. Atmos. Sci. 7, 1–7 (2024).

    Article 

    Google Scholar
     

  • Serrano-Notivoli, R. et al. Extraordinary warmth: An examination of Spain’s remarkable summer of 2022. Atmos. Res 293, 106931 (2023).

    Article 

    Google Scholar
     

  • Büntgen, U. et al. Current summer heat over the western Mediterranean region is unparalleled since medieval epochs. Glob. Planet. Change 232, 104336 (2024).

    Article 

    Google Scholar
     

  • Brotons, L., Aquilué, N., de Cáceres, M., Fortin, M.-J. & Fall, A. The influence of fire history, fire suppression strategies, and climate change on wildfire dynamics in Mediterranean Landscapes. PLOS ONE 8, e62392 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Moreno, M. V., Conedera, M., Chuvieco, E. & Pezzatti, G. B. Transformations in fire regimes and significant influencing factors in Spain from 1968 to 2010. Environ. Sci. Policy 37, 11–22 (2014).

    Article“`html

    Google Scholar
     

  • Ruffault, J. & Mouillot, F. In what way a novel fire-suppression policy can dramatically alter the fire-weather connection. Ecosphere 6, art199 (2015).

    Article 

    Google Scholar
     

  • Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Rising frequency and severity of the most severe wildfires on the planet. Nat. Ecol. Evol. 8, 1420–1425 (2024).

    Article 

    Google Scholar
     

  • Vicedo-Cabrera, A. M., Esplugues, A., Iñíguez, C., Estarlich, M. & Ballester, F. Effects on health from the 2012 Valencia (Spain) wildfires in children in a cohort analysis. Environ. Geochem. Health 38, 703–712 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cascio, W. E. Smoke from wildland fires and its impact on human health. Sci. Total Environ. 624, 586–595 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pacheco, R. M. & Claro, J. Defining the influence of wildfires on ecosystem services: a triangulation of scientific insights, governmental documents, and expert judgment in Portugal. Environ. Sci. Policy 142, 194–205 (2023).

    Article 

    Google Scholar
     

  • Nunes, J. P. et al. Afforestation, Subsequent
    “““html

    Forest Fires and Delivery of Hydrological Functions: a Model-Based Examination for a Mediterranean Mountainous Watershed. Land Degrad. Dev. 29, 776–788 (2018).

    Article

    Google Scholar

  • Moritz, M. A. et al. Adapting to coexist with wildfire. Nature 515, 58–66 (2014).

    Article
    CAS 

    Google Scholar

  • McWethy, D. B. et al. Reevaluating resilience to wildfire. Nat. Sustain. 2, 797–804 (2019).

    Article

    Google Scholar

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article

    Google Scholar

  • Riahi, K. et al. The shared socioeconomic trajectories and their energy, agrarian use, and greenhouse gas emissions outcomes: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article

    Google Scholar

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas levels and their prospects to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article
    CAS 

    Google Scholar

  • Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: justification and experimental setup. Geosci. Model Dev. 9, 2973–2998
    “`(2016).

    Article 

    Google Scholar
     

  • Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. (1972).

  • Nelson Jr, R. M. Assessment of diurnal variation in 10-h fuel stick moisture content. Can. J. Res. 30, 1071–1087 (2000).

    Article 

    Google Scholar
     

  • Carlson, J. D., Bradshaw, L. S., Nelson, R. M., Bensch, R. R. & Jabrzemski, R. Utilization of the Nelson model across four timelag fuel categories via Oklahoma field observations: model assessment and juxtaposition with National Fire Danger Rating System algorithms. Int. J. Wildland Fire 16, 204–216 (2007).

    Article 

    Google Scholar
     

  • Yebra, M. et al. Globe-LFMC, a worldwide plant water status repository for vegetation ecophysiology and wildfire initiatives. Sci. Data 6, 155 (2019).

    Article 

    Google Scholar
     

  • Aragoneses, E., García, M., Salis, M., Ribeiro, L. M. & Chuvieco, E. Categorization and cartography of European fuels applying a hierarchical, multipurpose fuel classification framework. Earth Syst. Sci. Data 15, 1287–1315 (2023).

    Article 

    Google Scholar
     

  • Scott, J. H. & Burgan, R. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model. (2005).

  • Brogli, R., Heim, C., Mensch, J., Sørland, S. L. & Schär, C. The pseudo-global-warming (PGW) framework: methodology, software suite PGW4ERA5 v1.1, validation, and sensitivity assessments. Geosci. Model Dev. 16, 907–926 (2023).

    Article 

    Google Scholar
     

  • Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Representative climate change scenarios for regional climate models. Geophys. Res. Lett. 23, 669–672 (1996).

    Article 

    Google Scholar
     


  • This page was generated programmatically. To view the article in its original setting, please follow the link below:
    https://www.nature.com/articles/s41612-025-00906-3
    if you wish to have this article removed from our site, please reach out to us

    fooshya

    Share
    Published by
    fooshya

    Recent Posts

    Temple Ambler’s Ultimate Esports and Gaming Hub

    This page was generated programmatically; to view the article in its initial location, please visit…

    1 month ago

    Exploring the Heartbeat of Innovation: Northwestern University Unveiled

    This webpage was generated automatically, to view the article in its original setting you can…

    1 month ago

    “Prepare for the Ultimate Gameplay Revolution: ‘inZOI’ Set to Dethrone The Sims!”

    This page was generated automatically; to view the article at its initial source, please follow…

    1 month ago

    “Leveling Up: Understanding Gaming Addiction Among Students”

    This webpage was generated automatically; to read the article at its original site, you can…

    1 month ago

    “How a York Car Park Scam Unexpectedly Enrolled Me in a Gaming Subscription!”

    This webpage was generated automatically; to view the article in its original setting, you can…

    1 month ago

    Turner Shines Bright: RMAC Swimmer of the Week Honors Awarded!

    This page was generated automatically; to view the article in its original context, you can…

    1 month ago