This webpage was generated automatically; to access the article in its initial source, please visit the link below:
https://www.nature.com/articles/s44185-024-00070-6
and if you wish to delete this article from our platform, kindly get in touch with us
FAO. Data on food and agriculture. Accessed 13.02.23. (2023).
Silvertown, J. et al. The Park Grass Experiment 1856–2006: its role in ecology. J. Ecol. 94, 801–814 (2006).
Hautier, Y. et al. Eutrophication diminishes the stabilizing impacts of biodiversity in natural grasslands. Nature 508, 521–525 (2014).
Townsend, A. R. et al. Effects of a transforming global nitrogen cycle on human health. Front. Ecol. Environ. 1, 240–246 (2003).
Bodirsky, B. L. et al. Reactive nitrogen requirements to nourish the global population by 2050 and the potential for reducing nitrogen pollution. Nature Comm. 5, 3858 (2014).
Capdevila-Cortada, M. Electrifying the Haber–Bosch process. Nature Catalysis 2, 1055–1055 (2019).
National Statistics. Final agricultural statistics on crop areas, yields, livestock populations and agricultural…workforce as of June 2021 – United Kingdom. Department for Environment Food and Rural Affairs. (2021).
Parliamentary Office of Science and Technology Brief 48: Restoration and establishment of semi-natural habitats. UK Parliament. (2022).
Blackstock, Rimes, Stevens, Jefferson, Mackintosh & Hopkins. The prevalence of semi-natural grassland communities in lowland England and Wales: a review of conservation surveys 1978–1996. Grass Forage Sci., 54, 1–18 (1999).
Klein, A. M. et al. Significance of pollinators in evolving landscapes for global crops. Proc. R. Soc. B 274, 303–313 (2007).
Ollerton, J., Winfree, R. & Tarrant, S. What number of flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Declines in bee populations prompted by combined pressures from parasites, pesticides, and insufficient flowers. Science 347, 1255957 (2015).
Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinction of aculeate pollinators in Britain and the influence of large-scale agricultural alterations. Science 346, 1360–1362 (2014).
Balfour, N. J., Ollerton, J., Castellanos, M. C. & Ratnieks, F. L. UK phenological records reveal considerable diversity and extinction rates among pollinators active in late summer. Biol. Con. 222, 278–283 (2018).
Nijssen, M. E., WallisDeVries, M. F. & Siepel, H. Routes for the impacts of augmented nitrogen deposition on fauna. Biol. Conserv. 212, 423–431 (2017).
David, T. I., Storkey, J. & Stevens, C. J. Comprehending how modified soil nitrogen impacts plant–pollinator relations. Arthropod-Plant Interact. 13, 671–684 (2019).
Helsen, K., Ceulemans, T., Stevens, C. J. & Honnay, O. Rising soil nutrient levels in European semi-natural grasslands significantly modify plant functional diversity independent of species decline. Ecosystems 17, 169–181 (2014).
Biesmeijer, J. C. et al. Concurrent reductions in pollinators and insect-pollinated flora in Britain and the Netherlands. Science 313, 351–354 (2006).
Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Connecting bees and blossoms: how do floral communities shape pollinator communities? Ecology 84, 2628–2642 (2003).
Storkey, J. et al. Biodiversity in grasslands rebounds after prolonged nitrogen application. Nature 528, 401–404 (2015).
Storkey, J. et al. Rothamsted’s Distinct Impact on Ecological Research Across Extended Time Frames, in: Dumbrell, A. J., Kordas, R. L., Woodward, G. (Eds.), Innovations in Ecological Research, Vol 55: Large-Scale Ecology: Model Systems to Global Perspectives, 3–42 (2016).
Liang, Y. T. et al. More than 150 Years of Continual Fertilization Influences the Spatial Dynamics of Microbial Biodiversity. Mbio 6. (2015).
Macholdt, J. et al. Persistent trends in yield variability of temperate managed grasslands. Agron. Sustain. Dev. 43, 19 (2023).
Crawley, M. J. et al. Factors Influencing Species Diversity in the Park Grass Experiment. Am. Nat. 165, 179–192 (2005).
Ramos, D. D. L., Bustamante, M. M., Silva, F. D. D. S. E. & Carvalheiro, L. G. The Impact of Crop Fertilization on Pollination Services – A Case Study of Common Bean. PloS one 13, 0204460 (2018).
Blüthgen, N. & Klein, A. M. Functional Diversity and Specialization: the Importance of Biodiversity in Plant–Pollinator Relationships. Basic Appl. Ecol. 12, 282–291 (2011).
Band, N., Kadmon, R., Mandel, M. & DeMalach, N. Evaluating the contributions of nitrogen, biomass, and niche dimensionality in driving species extinction in grassland ecosystems. Proc. Natl. Acad. Sci. 119, e2112010119 (2022).
Wesche, K., Krause, B., Culmsee, H. & Leuschner, C. A half-century of alterations in Central European grassland flora: Significant declines in species diversity and animal-pollinated vegetation. Biological Conservation 150, 76–85 (2012).
Munoz, A. A., Celedon-Neghme, C., Cavieres, L. A. & Arroyo, M. T. Upward influences of nutrient availability on floral yield, pollinator interaction, and seed production in a high-Andean shrub. Oecologia 143, 126–135 (2005).
Hoover, S. E. et al. Elevated temperatures, CO2, and nitrogen deposition synergistically influence a plant‐pollinator alliance. Ecol. Lett. 15, 227–234 (2012).
Carvalheiro, L., Vanderplanck, M. & Bustamante, M. M. Prolonged impacts of nitrogen enhancement on pollen composition of a plant species from Brazilian savannas, Pavonia rosa campestris. J. Poll. Ecol. 35, 367–379 (2023).
Gijbels, P., Ceulemans, T., Van den Ende, W. & Honnay, O. Experimental fertilization boosts amino acid levels in floral nectar, fruiting success and extent of self-fertilization in the orchid Gymnadenia conopsea. Oecologia 179, 785–795 (2015).
Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A. & Field, C. B. Varied responses of phenology to global alterations in a grassland habitat. Proc. Natl. Acad. Sci. 103, 13740–13744 (2006).
Xia, J. & Wan, S. Separate impacts of warming and nitrogen supplementation on plant phenology in the Inner Mongolian steppe. Ann. Bot. 111, 1207–1217 (2013).
Goulnik, J. et al. Floral trait functional diversity links to soil properties and positively affects pollination effectiveness in semi-natural grasslands. Agri. Ecosyst. Environ. 301, 107033 (2020).
McGill, B. J. et al. Reconstructing community ecology based on functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Balfour, N. J. et al. Foraging energetic efficiency mediates bee niche separation. Ecol. 102, e03285 (2021).
Woodcock, B. A. et al. Meta-analysis indicates that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Comm. 10, 1481 (2019).
Jangid, K. et al. Comparative effects of land use, management intensity, and fertilizer application on soil microbial community composition in agricultural systems. Soil Biol. Biochem. 40, 2843–2853 (2008).
Erisman, J. W. et al. Outcomes
“`of anthropogenic alteration of the worldwide nitrogen cycle. Philos. Trans. R. Soc. B, Biol. Sci. 368, 20130116 (2013).
Alexander, P. et al. Elevated energy and fertilizer costs are more detrimental than restrictions on food exports from Ukraine and Russia for food prices, health, and the environment. Nat. Food 4, 84–95 (2023).
Yadav, D. S., Jaiswal, B., Gautam, M. & Agrawal, M., Vegetative responses to Soil Contamination, (ed. Pratibha Singh).1-26. Springer Nature (2020).
Carswell, A. M., Gongadze, K., Misselbrook, T. H. & Wu, L. Effects of the conversion from permanent pasture to new swards on nitrogen use efficiency, nitrogen, and carbon budgets in beef and sheep production. Agric. Ecosyst. Environ. 283, 11 (2019).
Harris, C. & Ratnieks, F. L. Clover cultivation in agriculture: synergistic advantages for bees, environment, and farmers. J. Insect Conserv. 26, 339–357 (2022).
Royal Society, 2023. Report: Multipurpose landscapes: Guiding a long-term strategy for managing the UK’s land. royalsociety.org/living-landscapes
Balfour, N. J., Fensome, K. A., Samuelson, E. E. & Ratnieks, F. L. Following the dance: field survey of flowers and flower-visiting insects in a summer foraging hotspot identified through honey bee waggle dance decoding. Agric. Ecosyst. Environ. 213, 265–271 (2015).
Manning, P. et al. Intensification of grassland management undermines the relationships among the diversities of various plant and animal groups. Ecol. 96, 1492–1501 (2015).
Isbell, F. et al. Enrichment of nutrients, loss of biodiversity, leading to reductions in ecosystem productivity. Proc. Natl. Acad. Sci. USA 110, 11911–11916 (2013).
DEFRA. Annual report of the British survey on fertilizer practices 2023. (2023).
Dodd, M. E., Silvertown, J., McConway, K., Potts, J. & Crawley, M. Implementation of the British National Vegetation Classification across the communities of the Park Grass Experiment over time. Folia Geobot. Phytotaxon. 29, 321–334 (1994).
Ratnieks, F. L. & Balfour, N. J. Flora and pollinators: Is there a possibility that natural selection will create an imbalance between nectar supply and demand? Ecology Letters 24, 1741–1749 (2021).
Brock, P. D. Insects of Britain: A Guide for Identifying the Insects Found in Great Britain and Ireland. Princeton University Press. (2021).
Ball, S., Morris, R. Hoverflies of Britain. Princeton University Press (2015).
Falk, S. Guide to the Bees of Great Britain and Ireland. Bloomsbury Publishing. (2018).
Streeter, D., Hart-Davies, C., Hardcastle, A., Cole, F. and Harper, L. 2009. Collins Flower Guide. Collins. (2009).
Cook, P. M. et al. Data on Traits for the Butterflies and Macro-moths of Great Britain and Ireland. Ecol. 103, e3670 (2022).
Corbet, S. A. Flowers for Butterfly Nectar: Butterfly Structure and Floral Design. Entomol. Exp. Appl. 96, 289–298 (2000).
Goulson, D., Hanley, M. E., Darvill, B., Ellis, J. S. & Knight, M. E. Rarity Factors in Bumblebees. Biol. Conserv. 122, 1–8 (2005).
Gilbert, F. S. Patterns in Morphometry among Hoverflies (Diptera, Syrphidae). Proc. R. Soc. B. Biological sciences 224, 79–90 (1985).
Balfour, N. J., Garbuzov, M. & Ratnieks, F. L. Why do more Bumble Bees (Bombus spp.) than Honey Bees (Apis mellifera) collect nectar from Lavender (Lavandula spp.)? Ecol. Entomol. 38, 323–329 (2013).
Baude, M. et al. An Assessment of Historical Nectar Availability Unveils the Decline and Resurgence of Floral Resources in Britain. Nature 530, 85–88 (2016).
Klotz, S., Kühn, I. & Durka, W. BIOLFLOR – A database with biological and ecological characteristics for the flora of Germany. Schriftenreihe für Vegetationskunde 38, 1–334 (2002).
Magneville, C. et al. mFD: an R package to calculate and illustrate the various aspects of functional diversity. Ecography 1, 05904 (2022).
Rothamsted Research (2023a). Park Grass Soil Nutrient Data, 2017-2022 Electronic Rothamsted Archive, Rothamsted Research. https://doi.org/10.23637/KeyRefOAPGsoilpH.
Defra, 2010. The fertilizer manual (8th ed.) (RB209).
Rothamsted Research (2023b). Park Grass Yields, 1960–2022 Electronic Rothamsted Archive, Rothamsted Research. https://doi.org/10.23637/rpg5-yields1903-1964-01.
R Core Team, 2022. R: A language and environment for statistical analysis. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Hartig, F. and Lohse, L., 2022. Package ‘DHARMa’: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package. https://cran.r-project.org/web/packages/DHARMa/index.html
Brooks, M. E. et al. glmmTMB integrates speed and adaptability among packages for zero-inflated generalized linear mixed modeling. The R Journal 9, 378–400 (2017).
Lüdecke, D. ggeffects: Clean data frames of marginal effects stemming from regression models. J. Open Source Soft. 3, 772 (2018).
Zeileis, A., et al., 2018. Package ‘betareg’.
This webpage was generated automatically; to read the article in its original format, visit the link below:
https://www.nature.com/articles/s44185-024-00070-6
if you wish to remove this article from our site, please reach out to us