Unveiling the Blueprint: Comprehensive Human Recombination Maps in Nature


This webpage was generated automatically; to access the article in its authentic location, you may proceed to the link below:
https://www.nature.com/articles/s41586-024-08450-5
and should you wish to eliminate this article from our site, please get in touch with us


  • Halldorsson, B. V. et al. Investigating mutagenic impacts of recombination using a sequence-level genetic map. Science 363, eaau1043 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kong, A. et al. A detailed recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bhérer, C., Campbell, C. L. & Auton, A. Enhanced genetic maps demonstrate sexual dimorphism in human meiotic recombination across various scales. Nat. Commun. 8, 14994 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. & Weber, J. L. In-depth human genetic maps: individual and sex-specific disparities in recombination. Am. J. Hum. Genet. 63, 861 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central“`html

    Google Scholar
     

  • Frazer, K. A. et al. A second generation human haplotype map comprising over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Haber, J. Genome Stability (Garland Science, 2013).

  • Zickler, D. & Kleckner, N. Homologous recombination, pairing, and synapsis during meiosis. Cold Spring Harb. Perspect. Biol. 7, 1–28 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bergman, J. & Schierup, M. H. Evolutionary patterns of pseudoautosomal region 1 in humans and great apes. Genome Biol. 23, 215 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jónsson, H. et al. Influence of parents on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519–522 (2017).

    Article 
    ADS 
    “““html
    PubMed

    Google Scholar

  • Pratto, F. et al. Maps of recombination initiation from individual human genomes. Science 346, 1256442 (2014).

  • Hinch, R., Donnelly, P. & Hinch, A. G. Meiotic DNA breaks instigate multifaceted mutagenesis in the human germ line. Science 382, eadh2531 (2023).

    Article
    CAS
    PubMed
    PubMed Central
    MATH

    Google Scholar

  • Sun, H., Treco, D., Schultes, N. P. & Szostak, J. W. Double-strand breaks at a site of initiation for meiotic gene conversion. Nature 338, 87–90 (1989).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Baudat, F. et al. PRDM9 is a significant factor of meiotic recombination hotspots in both humans and mice. Science 327, 836–840 (2010).

    Article
    ADS
    CAS
    PubMed
    MATH

    Google Scholar

  • Robert, T. et al. The TopoVIB-like protein family is necessary
    “`for meiotic DNA double-strand break emergence. Science 351, 943–949 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are produced by Spo11, a constituent of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair mechanism for recombination. Cell 33, 25–35 (1983).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zickler, D. & Kleckner, N. Meiosis: interactions between homologs. Annu. Rev. Genet. 57, 1–63 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J.-M., Cooper, D. N., Chuzhanova, N., Férec, C. & Patrinos, G. P. Gene conversion: mechanisms, evolution, and human diseases. Nat. Rev. Genet. 8, 762–775 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Handel, M. A. & Schimenti, J. C. The genetics of mammalian meiosis: regulation, dynamics and implications for fertility. Nat. Rev. Genet. 11, 124–136 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gray, S. & Cohen, P. E. Regulation of meiotic crossovers: from the formation of double-strand breaks to their specification. Annu. Rev. Genet. 50, 175–210 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Collins, J. K. & Jones, K. T. Responses to DNA damage in mammalian oocytes. Reproduction 152, R15–R22 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gudbjartsson, D. F. et al. Variants in sequence identified through whole genome sequencing of a large cohort of Icelanders. Sci. Data 2, 150011 (2015).

    “`html
    Article
    PubMed
    PubMed Central

    Google Scholar

  • Hardarson, M. T., Palsson, G. & Halldorsson, B. V. NCOurd: modeling length distributions of NCO events and gene conversion tracts. Bioinformatics 39, btad485 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Halldorsson, B. V. et al. The frequency of meiotic gene conversion is influenced by sex and age. Nat. Genet. 48, 1377–1384 (2016).

    Article
    CAS
    PubMed
    PubMed Central
    MATH

    Google Scholar

  • Williams, A. L. et al. Non-crossover gene conversions exhibit a pronounced GC bias and surprising clustering in humans. eLife 4, e04637 (2015).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Browning, S. R. &…
    “`

    Browning, B. L. Biobank-scale inference of multi-individual identity by descent and gene conversion. Am. J. Hum. Genet. 111, 691–700 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tiemann-Boege, I., Schwarz, T., Striedner, Y. & Heissl, A. The repercussions of sequence erosion in the progression of recombination hotspots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160462 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostka, D., Hubisz, M. J., Siepel, A. & Pollard, K. S. The significance of GC-biased gene conversion in influencing the rapidly evolving sections of the human genome. Mol. Biol. Evol. 29, 1047–1057 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jeffreys, A. J. & May, C. A. Intense and highly focused gene conversion activity in human meiotic crossover hotspots. Nat. Genet. 36, 151–156 (2004).

    Article 
    CAS 
    PubMed 
    MATH“`html

    Google Scholar
     

  • Wall, J. D., Robinson, J. A. & Cox, L. A. High-precision evaluations of crossover and noncrossover recombination from a controlled baboon colony. Genome Biol. Evol. 14, evac040 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Versoza, C. J. et al. Fresh perspectives on the realm of crossover and noncrossover occurrences in rhesus macaques (Macaca mulatta). Genome Biol. Evol. 16, evad223 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Cole, F. et al. Tetrad examination in mice reveals aspects of recombination processes and hotspot evolutionary dynamics. Nat. Genet. 46, 1072–1080 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mimitou, E. P., Yamada, S. & Keeney, S. A worldwide perspective on meiotic double-strand break end resection. Science 355, 40–45 (2017).

    Article 
    ADS 
    CAS 
    “““html
    PubMed
    PubMed Central

    Google Scholar

  • Paiano, J. et al. ATM and PRDM9 influence SPO11-bound recombination intermediates throughout meiosis. Nat. Commun. 11, 1–15 (2020).

    Article
    ADS

    Google Scholar

  • Oliver-Bonet, M., Campillo, M., Turek, P. J., Ko, E. & Martin, R. H. Assessment of replication protein A (RPA) during human spermatogenesis. Mol. Hum. Reprod. 13, 837–844 (2007).

    Article
    CAS
    PubMed
    MATH

    Google Scholar

  • Lenzi, M. L. et al. Significant heterogeneity in the molecular processes leading to the formation of chiasmata during meiosis I in human oocytes. Am. J. Hum. Genet. 76, 112–127 (2005).

    Article
    CAS
    PubMed
    MATH

    Google Scholar

  • Wang, S. et al. Per-nucleus crossover covariation and its implications for evolution. Cell 177, 326–338.e16 (2019).

    Article
    CAS
    “““html
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Martini, E., Diaz, R. L., Hunter, N. & Keeney, S. Crossover homeostasis in yeast meiosis. Cell (2006).

  • Altemose, N. et al. A chart of human PRDM9 binding offers proof for new behaviors of PRDM9 and additional zinc-finger proteins during meiosis. eLife 6, e28383 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci through integrative epigenomics. Nature 590, 300–307 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, A. et al. Detailed recombination rate variations among sexes, populations, and individuals. Nature 467, 1099–1103 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    “`MATH 

    Google Scholar
     

  • Powers, N. R. et al. The meiotic recombination initiator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLoS Genet. 12, e1006146 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pai, C. C. et al. A histone H3K36 chromatin shift regulates DNA double-strand break repair pathway selection. Nat. Commun. 5, 4091 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Baudat, F. & de Massy, B. Controlling double-strand DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosom. Res. 15, 565–577 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hinch, A. G. et al. Elements influencing meiotic recombination uncovered by whole-genome sequencing of individual sperm. Science 363, eaau8861 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central“`html
    MATH 

    Google Scholar
     

  • Centola, M. & Carbon, J. Cloning and analysis of centromeric DNA from Neurospora crassa. Mol. Cell. Biol. 14, 1510–1519 (1994).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Puechberty, J. et al. Genetic and physical investigations of the centromeric and pericentromeric areas of human chromosome 5: recombination across 5cen. Genomics 56, 274–287 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahtani, M. M. & Willard, H. F. Genetic and physical mapping of the human X chromosome centromere: inhibition of recombination. Genome Res. 8, 100–110 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vincenten, N. et al. The kinetochore inhibits centromere-proximal crossover recombination during meiosis. eLife 4, e10850 (2015).

    Article 
    PubMed 
    PubMed Central 
    “`
    Google Scholar

  • Lindahl, T. Instability and degradation of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article
    CAS
    ADS
    CAS
    PubMed
    MATH

    Google Scholar

  • Chan, K. & Gordenin, D. A. Groups of multiple mutations: frequency and molecular mechanisms. Annu. Rev. Genet. 49, 243–267 (2015).

    Article
    CAS
    PubMed
    PubMed Central
    MATH

    Google Scholar

  • Pratto, F. et al. Meiotic recombination reflects patterns of germline replication in both mice and humans. Cell (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Neri, F. et al. Intragenic DNA methylation obstructs erroneous transcription initiation. Nature 543, 72–77 (2017).

    Article“`html
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldmann, J. M. et al. Germline de novo mutation clusters develop during oocyte aging in genomic areas with elevated double-strand-break frequency. Nat. Genet. 50, 487–492 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kong, A. et al. Recombination frequency and reproductive success in humans. Nat. Genet. 36, 1203–1206 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Martin, H. C. et al. Multicohort investigation of the maternal age impact on recombination. Nat. Commun. 6, 7846 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, R. et al. A detailed map of non-crossover occurrences reveals the influence of genetic variation on mammalian meiotic recombination. Nat. Commun. 10, 3900 (2019).

    “`

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • de Boer, E., Jasin, M. & Keeney, S. Local and gender-specific biases in crossover vs. noncrossover results at meiotic recombination hotspots in mice. Genes Dev. 29, 1721–1733 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Boer, E., Stam, P., Dietrich, A. J. J., Pastink, A. & Heyting, C. Two tiers of interference in mouse meiotic recombination. Proc. Natl Acad. Sci. USA 103, 9607–9612 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. & Xu, X. Microhomology-mediated end joining: new members join the team. Cell Biosci. 7, 6 (2017).

    Article 
    PubMed“`html
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wartosch, L. et al. Sources and mechanisms contributing to aneuploidy in human oocytes. Prenat. Diagn. 41, 620–630 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Steinthorsdottir, V. et al. Variant in the synaptonemal complex protein SYCE2 correlates with pregnancy loss due to its impact on recombination. Nat. Struct. Mol. Biol. (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, A. et al. Identification of sharing by descent, extended phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kong, A. et al. Ancestral origin of sequence variants associated with complex diseases.
    “`

    Nature 462, 868–874 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schneider, V. A. et al. Assessment of GRCh38 and de novo haploid genome assemblies highlights the persistent quality of the reference assembly. Genome Res. 27, 849–864 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cheung, V. G. et al. Incorporation of cytogenetic landmarks within the draft sequence of the human genome. Nature 409, 953–958 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Furey, T. S. & Haussler, D. Merging of the cytogenetic map and the draft human genome sequence. Hum. Mol. Genet. 12, 1037–1044 (2003).

    Article 
    CASPubMed 
    MATH 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: assessments in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

  • Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: present condition, taxonomic growth, and functional characterization. Nucleic Acids Res. 44, D733–D745 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Pálsson, G. DecodeGenetics/PalssonEtAl_Nature_2024: preliminary release of data. Zenodo (2024).


  • This page was generated automatically. To read the article in its original source, please visit the link below:
    https://www.nature.com/articles/s41586-024-08450-5
    and should you wish to remove this article from our website, please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *