This webpage was generated automatically; to access the article in its authentic location, you may proceed to the link below:
https://www.nature.com/articles/s41586-024-08450-5
and should you wish to eliminate this article from our site, please get in touch with us
Halldorsson, B. V. et al. Investigating mutagenic impacts of recombination using a sequence-level genetic map. Science 363, eaau1043 (2019).
Kong, A. et al. A detailed recombination map of the human genome. Nat. Genet. 31, 241–247 (2002).
Bhérer, C., Campbell, C. L. & Auton, A. Enhanced genetic maps demonstrate sexual dimorphism in human meiotic recombination across various scales. Nat. Commun. 8, 14994 (2017).
Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. & Weber, J. L. In-depth human genetic maps: individual and sex-specific disparities in recombination. Am. J. Hum. Genet. 63, 861 (1998).
Frazer, K. A. et al. A second generation human haplotype map comprising over 3.1 million SNPs. Nature 449, 851–861 (2007).
Haber, J. Genome Stability (Garland Science, 2013).
Zickler, D. & Kleckner, N. Homologous recombination, pairing, and synapsis during meiosis. Cold Spring Harb. Perspect. Biol. 7, 1–28 (2015).
Bergman, J. & Schierup, M. H. Evolutionary patterns of pseudoautosomal region 1 in humans and great apes. Genome Biol. 23, 215 (2022).
Jónsson, H. et al. Influence of parents on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519–522 (2017).
Pratto, F. et al. Maps of recombination initiation from individual human genomes. Science 346, 1256442 (2014).
Hinch, R., Donnelly, P. & Hinch, A. G. Meiotic DNA breaks instigate multifaceted mutagenesis in the human germ line. Science 382, eadh2531 (2023).
Sun, H., Treco, D., Schultes, N. P. & Szostak, J. W. Double-strand breaks at a site of initiation for meiotic gene conversion. Nature 338, 87–90 (1989).
Baudat, F. et al. PRDM9 is a significant factor of meiotic recombination hotspots in both humans and mice. Science 327, 836–840 (2010).
Robert, T. et al. The TopoVIB-like protein family is necessary
“`for meiotic DNA double-strand break emergence. Science 351, 943–949 (2016).
Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are produced by Spo11, a constituent of a widely conserved protein family. Cell 88, 375–384 (1997).
Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair mechanism for recombination. Cell 33, 25–35 (1983).
Zickler, D. & Kleckner, N. Meiosis: interactions between homologs. Annu. Rev. Genet. 57, 1–63 (2023).
Chen, J.-M., Cooper, D. N., Chuzhanova, N., Férec, C. & Patrinos, G. P. Gene conversion: mechanisms, evolution, and human diseases. Nat. Rev. Genet. 8, 762–775 (2007).
Handel, M. A. & Schimenti, J. C. The genetics of mammalian meiosis: regulation, dynamics and implications for fertility. Nat. Rev. Genet. 11, 124–136 (2010).
Gray, S. & Cohen, P. E. Regulation of meiotic crossovers: from the formation of double-strand breaks to their specification. Annu. Rev. Genet. 50, 175–210 (2016).
Collins, J. K. & Jones, K. T. Responses to DNA damage in mammalian oocytes. Reproduction 152, R15–R22 (2016).
Gudbjartsson, D. F. et al. Variants in sequence identified through whole genome sequencing of a large cohort of Icelanders. Sci. Data 2, 150011 (2015).
Hardarson, M. T., Palsson, G. & Halldorsson, B. V. NCOurd: modeling length distributions of NCO events and gene conversion tracts. Bioinformatics 39, btad485 (2023).
Halldorsson, B. V. et al. The frequency of meiotic gene conversion is influenced by sex and age. Nat. Genet. 48, 1377–1384 (2016).
Williams, A. L. et al. Non-crossover gene conversions exhibit a pronounced GC bias and surprising clustering in humans. eLife 4, e04637 (2015).
Browning, S. R. &…
“`
Browning, B. L. Biobank-scale inference of multi-individual identity by descent and gene conversion. Am. J. Hum. Genet. 111, 691–700 (2024).
Tiemann-Boege, I., Schwarz, T., Striedner, Y. & Heissl, A. The repercussions of sequence erosion in the progression of recombination hotspots. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160462 (2017).
Kostka, D., Hubisz, M. J., Siepel, A. & Pollard, K. S. The significance of GC-biased gene conversion in influencing the rapidly evolving sections of the human genome. Mol. Biol. Evol. 29, 1047–1057 (2012).
Jeffreys, A. J. & May, C. A. Intense and highly focused gene conversion activity in human meiotic crossover hotspots. Nat. Genet. 36, 151–156 (2004).
Wall, J. D., Robinson, J. A. & Cox, L. A. High-precision evaluations of crossover and noncrossover recombination from a controlled baboon colony. Genome Biol. Evol. 14, evac040 (2022).
Versoza, C. J. et al. Fresh perspectives on the realm of crossover and noncrossover occurrences in rhesus macaques (Macaca mulatta). Genome Biol. Evol. 16, evad223 (2024).
Cole, F. et al. Tetrad examination in mice reveals aspects of recombination processes and hotspot evolutionary dynamics. Nat. Genet. 46, 1072–1080 (2014).
Mimitou, E. P., Yamada, S. & Keeney, S. A worldwide perspective on meiotic double-strand break end resection. Science 355, 40–45 (2017).
Paiano, J. et al. ATM and PRDM9 influence SPO11-bound recombination intermediates throughout meiosis. Nat. Commun. 11, 1–15 (2020).
Oliver-Bonet, M., Campillo, M., Turek, P. J., Ko, E. & Martin, R. H. Assessment of replication protein A (RPA) during human spermatogenesis. Mol. Hum. Reprod. 13, 837–844 (2007).
Lenzi, M. L. et al. Significant heterogeneity in the molecular processes leading to the formation of chiasmata during meiosis I in human oocytes. Am. J. Hum. Genet. 76, 112–127 (2005).
Wang, S. et al. Per-nucleus crossover covariation and its implications for evolution. Cell 177, 326–338.e16 (2019).
Martini, E., Diaz, R. L., Hunter, N. & Keeney, S. Crossover homeostasis in yeast meiosis. Cell (2006).
Altemose, N. et al. A chart of human PRDM9 binding offers proof for new behaviors of PRDM9 and additional zinc-finger proteins during meiosis. eLife 6, e28383 (2017).
Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci through integrative epigenomics. Nature 590, 300–307 (2021).
Kong, A. et al. Detailed recombination rate variations among sexes, populations, and individuals. Nature 467, 1099–1103 (2010).
Powers, N. R. et al. The meiotic recombination initiator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLoS Genet. 12, e1006146 (2016).
Pai, C. C. et al. A histone H3K36 chromatin shift regulates DNA double-strand break repair pathway selection. Nat. Commun. 5, 4091 (2014).
Baudat, F. & de Massy, B. Controlling double-strand DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosom. Res. 15, 565–577 (2007).
Hinch, A. G. et al. Elements influencing meiotic recombination uncovered by whole-genome sequencing of individual sperm. Science 363, eaau8861 (2019).
Centola, M. & Carbon, J. Cloning and analysis of centromeric DNA from Neurospora crassa. Mol. Cell. Biol. 14, 1510–1519 (1994).
Puechberty, J. et al. Genetic and physical investigations of the centromeric and pericentromeric areas of human chromosome 5: recombination across 5cen. Genomics 56, 274–287 (1999).
Mahtani, M. M. & Willard, H. F. Genetic and physical mapping of the human X chromosome centromere: inhibition of recombination. Genome Res. 8, 100–110 (1998).
Vincenten, N. et al. The kinetochore inhibits centromere-proximal crossover recombination during meiosis. eLife 4, e10850 (2015).
Lindahl, T. Instability and degradation of the primary structure of DNA. Nature 362, 709–715 (1993).
Chan, K. & Gordenin, D. A. Groups of multiple mutations: frequency and molecular mechanisms. Annu. Rev. Genet. 49, 243–267 (2015).
Pratto, F. et al. Meiotic recombination reflects patterns of germline replication in both mice and humans. Cell (2021).
Neri, F. et al. Intragenic DNA methylation obstructs erroneous transcription initiation. Nature 543, 72–77 (2017).
Goldmann, J. M. et al. Germline de novo mutation clusters develop during oocyte aging in genomic areas with elevated double-strand-break frequency. Nat. Genet. 50, 487–492 (2018).
Kong, A. et al. Recombination frequency and reproductive success in humans. Nat. Genet. 36, 1203–1206 (2004).
Martin, H. C. et al. Multicohort investigation of the maternal age impact on recombination. Nat. Commun. 6, 7846 (2015).
Li, R. et al. A detailed map of non-crossover occurrences reveals the influence of genetic variation on mammalian meiotic recombination. Nat. Commun. 10, 3900 (2019).
“`
de Boer, E., Jasin, M. & Keeney, S. Local and gender-specific biases in crossover vs. noncrossover results at meiotic recombination hotspots in mice. Genes Dev. 29, 1721–1733 (2015).
de Boer, E., Stam, P., Dietrich, A. J. J., Pastink, A. & Heyting, C. Two tiers of interference in mouse meiotic recombination. Proc. Natl Acad. Sci. USA 103, 9607–9612 (2006).
Wang, H. & Xu, X. Microhomology-mediated end joining: new members join the team. Cell Biosci. 7, 6 (2017).
Wartosch, L. et al. Sources and mechanisms contributing to aneuploidy in human oocytes. Prenat. Diagn. 41, 620–630 (2021).
Steinthorsdottir, V. et al. Variant in the synaptonemal complex protein SYCE2 correlates with pregnancy loss due to its impact on recombination. Nat. Struct. Mol. Biol. (2024).
Kong, A. et al. Identification of sharing by descent, extended phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).
Kong, A. et al. Ancestral origin of sequence variants associated with complex diseases.
“`
Nature 462, 868–874 (2009).
Schneider, V. A. et al. Assessment of GRCh38 and de novo haploid genome assemblies highlights the persistent quality of the reference assembly. Genome Res. 27, 849–864 (2017).
Cheung, V. G. et al. Incorporation of cytogenetic landmarks within the draft sequence of the human genome. Nature 409, 953–958 (2001).
Furey, T. S. & Haussler, D. Merging of the cytogenetic map and the draft human genome sequence. Hum. Mol. Genet. 12, 1037–1044 (2003).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: assessments in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: present condition, taxonomic growth, and functional characterization. Nucleic Acids Res. 44, D733–D745 (2016).
Pálsson, G. DecodeGenetics/PalssonEtAl_Nature_2024: preliminary release of data. Zenodo (2024).
This page was generated automatically. To read the article in its original source, please visit the link below:
https://www.nature.com/articles/s41586-024-08450-5
and should you wish to remove this article from our website, please contact us