A broadly relevant stereospecific glycosylation

This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s44160-025-00846-z
and if you wish to take away this text from our web site please contact us


  • Fraser-Reid, B. O., Tatsuta, Ok. & Thiem, J. Glycoscience Chemistry and Chemical Biology 2nd edn (Springer, 2008).

  • Ohtsubo, Ok. & Marth, J. D. Glycosylation in mobile mechanisms of well being and illness. Cell 126, 855–867 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Dube, D. H. & Bertozzi, C. R. Glycans in most cancers and irritation—potential for therapeutics and diagnostics. Nat. Rev. Drug. Disc. 4, 477–488 (2005).

    CAS 

    Google Scholar
     

  • Park, Y. et al. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 355, 162–166 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, L.-F. et al. Palladium catalysis permits cross-coupling-like SN2-glycosylation of phenols. Science 382, 928–935 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, H. M. et al. Phenanthroline‐catalyzed stereoretentive glycosylations. Angew. Chem. Int. Ed. 58, 6957–6961 (2019).


    Google Scholar
     

  • Yu, B. Gold(I)-catalyzed glycosylation with glycosyl O-alkynylbenzoates as donors. Acc. Chem. Res. 51, 507–516 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Guberman, M. & Seeberger, P. H. Automated glycan meeting: a perspective. J. Am. Chem. Soc. 141, 5581–5592 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panza, M., Pistorio, S. G., Stine, Ok. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel method to conventional challenges. Chem. Rev. 118, 8105–8150 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. Glycomedicine: the present cutting-edge. Engineering 26, 12–15 (2023).

    CAS 

    Google Scholar
     

  • Bennett, C. S. Selective Glycosylations: Synthetic Methods and Catalysts (John Wiley & Sons, 2017).

  • Nigudkar, S. S. & Demchenko, A. V. Stereocontrolled 1,2-cis glycosylation because the driving power of progress in artificial carbohydrate chemistry. Chem. Sci. 6, 2687–2704 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adero, P. O., Amarasekara, H., Wen, P., Bohé, L. & Crich, D. The experimental proof in help of glycosylation mechanisms on the SN1–SN2 interface. Chem. Rev. 118, 8242–8284 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levi, S. M., Li, Q., Rötheli, A. R. & Jacobsen, E. N. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions. Proc. Nat. Acad. Sci. USA 116, 35–39 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X. et al. A “traceless” directing group permits catalytic SN2 glycosylation towards 1,2-cis-glycopyranosides. J. Am. Chem. Soc. 143, 11908–11913 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-H., Yang, H., Park, J. & Boons, G.-J. A normal technique for stereoselective glycosylations. J. Carbohydr. Chem. 127, 12090–12097 (2005).

    CAS 

    Google Scholar
     

  • Issa, J. P. & Bennett, C. S. A reagent-controlled SN2-glycosylation for the direct synthesis of β-linked 2-deoxy-sugars. J. Am. Chem. Soc. 136, 5740–5744 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X., Zhang, Y., Zhu, X., Wei, Y. & Zhang, L. Directed SN2 glycosylation using an amide-functionalized 1-naphthoate platform that includes a selectivity-safeguarding mechanism. J. Am. Chem. Soc. 145, 11921–11926 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, X., Zhang, Y., Zhu, X. & Zhang, L. An SN2-type technique towards 1, 2-cis-furanosides. CCS Chem. 4, 3677–3685 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurence, C., Brameld, Ok. A., Graton, J., Le Questel, J.-Y. & Renault, E. The pKBHX database: towards a greater understanding of hydrogen-bond basicity for medicinal chemists. J. Med. Chem. 52, 4073–4086 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. 2-Diphenylphosphinoyl-acetyl as a distant directing group for the extremely stereoselective synthesis of β-glycosides. Chin. J. Chem. 40, 443–452 (2022).

    CAS 

    Google Scholar
     

  • Liu, X. et al. Direct synthesis of two,6-dideoxy-β-glycosides and β-rhamnosides with a stereodirecting 2-(diphenylphosphinoyl)acetyl group. Angew. Angew. Chem. Int. Ed. 61, e202206128 (2022).

    CAS 

    Google Scholar
     

  • Njeri, D. Ok., Valenzuela, E. A. & Ragains, J. R. Leveraging trifluoromethylated benzyl teams towards the extremely 1,2-cis-selective glucosylation of reactive alcohols. Org. Lett. 23, 8214–8218 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q., Levi, S. M. & Jacobsen, E. N. Highly selective β-mannosylations and β-rhamnosylations catalyzed bybis-thiourea. J. Am. Chem. Soc. 142, 11865–11872 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cato, D., Buskas, T. & Boons, G. J. Highly environment friendly stereospecific preparation of Tn and Tf constructing blocks utilizing thioglycosyl donors and the Ph2SO/Tf2O promotor system. J. Carbohydr. Chem. 24, 503–516 (2005).

    CAS 

    Google Scholar
     

  • Kuduk, S. D. et al. Synthetic and immunological research on clustered modes of mucin-related Tn and Tf O-linked antigens: the preparation of a glycopeptide-based vaccine for medical trials towards prostate most cancers. J. Am. Chem. Soc. 120, 12474–12485 (1998).

    CAS 

    Google Scholar
     

  • Hou, D. & Lowary, T. L. Recent advances within the synthesis of 2-deoxy-glycosides. Carbohydr. Res. 344, 1911–1940 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Mayfield, A. B., Metternich, J. B., Trotta, A. H. & Jacobsen, E. N. Stereospecific furanosylations catalyzed by bis-thiourea hydrogen-bond donors. J. Am. Chem. Soc. 142, 4061–4069 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H., Schaugaard, R. N., Li, J., Schlegel, H. B. & Nguyen, H. M. Stereoselective 1,2-cis furanosylations catalyzed by phenanthroline. J. Am. Chem. Soc. 144, 7441–7456 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, C., Li, M., Luo, Y. & Wu, W. Isolation and structural characterization of an immunostimulating polysaccharide from fuzi, Aconitum carmichaeli. Carbohydr. Res. 341, 485–491 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Lemieux, R. U., Hendriks, Ok. B., Stick, R. V. & James, Ok. Halide ion catalyzed glycosidation reactions. syntheses of α-linked disaccharides. J. Am. Chem. Soc. 97, 4056–4062 (1975).

    CAS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s44160-025-00846-z
    and if you wish to take away this text from our web site please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *