This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s42003-025-08693-6
and if you wish to take away this text from our web site please contact us
Fernández-Barat, L. et al. Intensive care unit-acquired pneumonia attributable to Pseudomonas aeruginosa with and with out multidrug resistance. J. Infect. 74, 142–152 (2017).
Rossi, E. et al. Pseudomonas aeruginosa adaptation and evolution in sufferers with cystic fibrosis. Nat. Rev. Microbiol. 19, 331–342 (2021).
Wood, S. J., Kuzel, T. M. & Shafikhani, S. H. Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells 12, 199 (2023).
Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F. & Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 23, 15779 (2022).
Organization, W. H. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. (World Health Organization, 2024).
Tacconelli, E. et al. Discovery, analysis, and improvement of latest antibiotics: the WHO precedence listing of antibiotic-resistant micro organism and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).
Yang, J. J., Tsuei, Ok.-S. C. & Shen, E. P. The position of sort III secretion system within the pathogenesis of Pseudomonas aeruginosa microbial keratitis. Tzu Chi Med. J. 34, 8–14 (2022).
Muggeo, A., Coraux, C. & Guillard, T. Current ideas on Pseudomonas aeruginosa interplay with human airway epithelium. PLoS Pathog. 19, e1011221 (2023).
Notti, R. Q. & Stebbins, C. E. The construction and performance of sort III secretion methods. Microbiol. Spectr. 4, 1–30 (2016).
Yahr, T. L. & Wolfgang, M. C. Transcriptional regulation of the Pseudomonas aeruginosa sort III secretion system. Mol. Microbiol. 62, 631–640 (2006).
Urbanowski, M. L., Lykken, G. L. & Yahr, T. L. A secreted regulatory protein {couples} transcription to the secretory exercise of the Pseudomonas aeruginosa sort III secretion system. Proc. Natl Acad. Sci. USA 102, 9930–9935 (2005).
Vakulskas, C. A., Brady, Ok. M. & Yahr, T. L. Mechanism of Transcriptional Activation by Pseudomonas aeruginosa ExsA. J. Bacteriol. 191, 6654–6664 (2009).
McCaw, M. L., Lykken, G. L., Singh, P. Ok. & Yahr, T. L. ExsD is a destructive regulator of the Pseudomonas aeruginosa sort III secretion regulon. Mol. Microbiol. 46, 1123–1133 (2002).
Wagner, S. et al. Bacterial sort III secretion methods: a fancy gadget for the supply of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol. Lett. 365, fny201 (2018).
Forsberg, Å, Viitanen, A.-M., Skurnik, M. & Wolf-Watz, H. The surface-located YopN protein is concerned in calcium sign transduction in Yersinia pseudotuberculosis. Mol. Microbiol. 5, 977–986 (1991).
Joseph, S. S. & Plano, G. V. The SycN/YscB chaperone-binding area of YopN is required for the calcium-dependent regulation of Yop secretion by Yersinia pestis. Front. Cell Infect. Microbiol. 3, 1 (2013).
Ngo, T.-D. et al. The PopN gate-keeper advanced acts on the ATPase PscN to manage the T3SS secretion swap from early to center substrates in Pseudomonas aeruginosa. J. Mol. Biol. 432, 166690 (2020).
Horna, G. & Ruiz, J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol. Res. 246, 126719 (2021).
Sana, T. G., Berni, B. & Bleves, S. The T6SSs of Pseudomonas aeruginosa pressure PAO1 and their effectors: past bacterial-cell focusing on. Front. Cell Infect. Microbiol. 6, 61 (2016).
Habich, A. et al. Distribution of the 4 sort VI secretion methods in Pseudomonas aeruginosa and classification of their core and accent effectors. Nat. Commun. 16, 888 (2025).
Hood, R. D. et al. A sort VI secretion system of Pseudomonas aeruginosa targets a toxin to micro organism. Cell Host Microbe 7, 25–37 (2010).
Colautti, J., Kelly, S. D. & Whitney, J. C. Specialized killing throughout the domains of life by the sort VI secretion methods of Pseudomonas aeruginosa. Biochem. J. 482, 1–15 (2025).
Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: sort VI secretion system counterattack throughout bacterial cell-cell interactions. Cell 152, 884–894 (2013).
Chen, L., Zou, Y., She, P. & Wu, Y. Composition, operate, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res. 172, 19–25 (2015).
Stolle, A.-S., Meader, B. T., Toska, J. & Mekalanos, J. J. Endogenous membrane stress induces T6SS exercise in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 118, e2018365118 (2021).
Nolan, L. M. et al. Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nat. Microbiol. 6, 1199–1210 (2021).
González-Magaña, A. et al. The P. aeruginosa effector Tse5 kinds membrane pores disrupting the membrane potential of intoxicated micro organism. Commun. Biol. 5, 1189 (2022).
Le, N.-H., Pinedo, V., Lopez, J., Cava, F. & Feldman, M. F. Killing of Gram-negative and Gram-positive micro organism by a bifunctional cell wall-targeting T6SS effector. Proc. Natl Acad. Sci. USA 118, e2106555118 (2021).
Pissaridou, P. et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA injury to bacterial opponents. Proc. Natl Acad. Sci. USA 115, 12519–12524 (2018).
Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to focus on cells. Nature 475, 343–347 (2011).
Ross, P. et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281 (1987).
Hickman, J. W., Tifrea, D. F. & Harwood, C. S. A chemosensory system that regulates biofilm formation by means of modulation of cyclic diguanylate ranges. Proc. Natl Acad. Sci. USA 102, 14422–14427 (2005).
Ryan, R. P. et al. HD-GYP area proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ. Microbiol. 11, 1126–1136 (2009).
Guttenplan, S. B. & Kearns, D. B. Regulation of flagellar motility throughout biofilm formation. FEMS Microbiol. Rev. 37, 849–871 (2013).
Wang, T., Hua, C. & Deng, X. c-di-GMP signaling in Pseudomonas syringae advanced. Microbiol. Res. 275, 127445 (2023).
Hengge, R. Principles of c-di-GMP signalling in micro organism. Nat. Rev. Microbiol. 7, 263–273 (2009).
Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in micro organism. Annu. Rev. Genet. 40, 385–407 (2006).
Matsuyama, B. Y. et al. Mechanistic insights into c-di-GMP-dependent management of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 113, E209–E218 (2016).
Hickman, J. W. & Harwood, C. S. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription issue. Mol. Microbiol. 69, 376–389 (2008).
O’Connor, J. R., Kuwada, N. J., Huangyutitham, V., Wiggins, P. A. & Harwood, C. S. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system resulting in c-di-GMP manufacturing. Mol. Microbiol. 86, 720–729 (2012).
Baraquet, C., Murakami, Ok., Parsek, M. R. & Harwood, C. S. The FleQ protein from Pseudomonas aeruginosa capabilities as each a repressor and an activator to manage gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res. 40, 7207–7218 (2012).
Lee, V. T. et al. A cyclic-di-GMP receptor required for bacterial exopolysaccharide manufacturing. Mol. Microbiol. 65, 1474–1484 (2007).
Gheorghita, A. A., Wozniak, D. J., Parsek, M. R. & Howell, P. L. Pseudomonas aeruginosa biofilm exopolysaccharides: meeting, operate, and degradation. FEMS Microbiol. Rev. 47, fuad060 (2023).
Gupta, Ok., Liao, J., Petrova, O. E., Cherny, Ok. E. & Sauer, Ok. Elevated ranges of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol. Microbiol. 92, 488–506 (2014).
Ma, G.-L., Chandra, H. & Liang, Z.-X. Taming the flagellar motor of pseudomonads with a nucleotide messenger. Environ. Microbiol. 22, 2496–2513 (2020).
Roy, A. B., Petrova, O. E. & Sauer, Ok. The Phosphodiesterase DipA (PA5017) Is Essential for Pseudomonas aeruginosa Biofilm Dispersion. J. Bacteriol. 194, 2904–2915 (2012).
Furukawa, S., Kuchma, S. L. & O’Toole, G. A. Keeping their choices open: acute versus persistent infections. J. Bacteriol. 188, 1211–1217 (2006).
Ciofu, O., Mandsberg, L. F., Wang, H. & Høiby, N. Phenotypes chosen throughout persistent lung an infection in cystic fibrosis sufferers: implications for the therapy of Pseudomonas aeruginosa biofilm infections. FEMS Immunol. Med. Microbiol. 65, 215–225 (2012).
Hall, Ok. M., Pursell, Z. F. & Morici, L. A. The position of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to persistent virulence throughout respiratory an infection. Front. Cell Infect. Microbiol. 12, 943346 (2022).
Mikkelsen, H., Sivaneson, M. & Filloux, A. Key two-component regulatory methods that management biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 13, 1666–1681 (2011).
Allsopp, L. P. et al. RsmA and AmrZ orchestrate the meeting of all three sort VI secretion methods in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 114, 7707–7712 (2017).
Mulcahy, H., O’Callaghan, J., O’Grady, E. P., Adams, C. & O’Gara, F. The posttranscriptional regulator RsmA performs a job within the interplay between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the sort III secretion system. Infect. Immun. 74, 3012–3015 (2006).
Francis, V. I., Stevenson, E. C. & Porter, S. L. Two-component methods required for virulence in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 364, fnx104 (2017).
Broder, U. N., Jaeger, T. & Jenal, U. LadS is a calcium-responsive kinase that induces acute-to-chronic virulence swap in Pseudomonas aeruginosa. Nat. Microbiol. 2, 16184 (2016).
Arbel-Goren, R., Tal, A. & Stavans, J. Phenotypic noise: results of post-transcriptional regulatory processes affecting mRNA. Wiley Interdiscip. Rev. RNA 5, 197–207 (2014).
Vakulskas, C. A., Potts, A. H., Babitzke, P., Ahmer, B. M. M. & Romeo, T. Regulation of bacterial virulence by Csr (Rsm) methods. Microbiol. Mol. Biol. Rev. 79, 193–224 (2015).
Moscoso, J. A., Mikkelsen, H., Heeb, S., Williams, P. & Filloux, A. The Pseudomonas aeruginosa sensor RetS switches sort III and kind VI secretion through c-di-GMP signalling. Environ. Microbiol. 13, 3128–3138 (2011).
Zhou, T. et al. The two-component system FleS/FleR represses H1-T6SS through cyclic di-GMP signaling in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 88, e0165521 (2022).
Nie, H. et al. Wsp system oppositely modulates antibacterial exercise and biofilm formation through FleQ-FleN advanced in Pseudomonas putida. Environ. Microbiol. 24, 1543–1559 (2022).
Lyng, M. & Kovács, Á. T. Microbial ecology: metabolic heterogeneity and the division of labor in multicellular constructions. Curr. Biol. 32, R771–R774 (2022).
Marsden, A. E. et al. Vfr instantly prompts exsA transcription to manage expression of the Pseudomonas aeruginosa sort III secretion system. J. Bacteriol. 198, 1442–1450 (2016).
Laventie, B.-J. et al. A surface-induced uneven program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25, 140–152.e6 (2019).
Laventie, B.-J. & Jenal, U. Surface sensing and adaptation in micro organism. Annu. Rev. Microbiol 74, 735–760 (2020).
Weigel, W. A. & Dersch, P. Phenotypic heterogeneity: a bacterial virulence technique. Microbes Infect. 20, 570–577 (2018).
Christen, M. et al. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328, 1295–1297 (2010).
Valentini, M. & Filloux, A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: classes from Pseudomonas aeruginosa and Other Bacteria. J. Biol. Chem. 291, 12547–12555 (2016).
Wang, L. et al. A toolbox of FRET-based c-di-GMP biosensors and its FRET-To-Sort software for genome-wide mapping of the second messenger regulatory community. Preprint at (2024).
Wang, T. et al. Pleiotropic results of c-di-GMP content material in Pseudomonas syringae. Appl. Environ. Microbiol. 85, e00152-19 (2019).
Christen, M. et al. Identification of small-molecule modulators of diguanylate cyclase by FRET-based high-throughput screening. ChemBioChem 20, 394–407 (2019).
Ko, M. & Park, C. Two novel flagellar elements and H-NS are concerned within the motor operate of Escherichia coli. J. Mol. Biol. 303, 371–382 (2000).
Diepold, A., Kudryashev, M., Delalez, N. J., Berry, R. M. & Armitage, J. P. Composition, formation, and regulation of the cytosolic C-ring, a dynamic part of the sort III secretion injectisome. PLoS Biol. 13, e1002039 (2015).
Wimmi, S. et al. Cytosolic sorting platform complexes shuttle sort III secretion system effectors to the injectisome in Yersinia enterocolitica. Nat. Microbiol. 9, 185–199 (2024).
Chua, S. L. et al. Dispersed cells signify a definite stage within the transition from bacterial biofilm to planktonic life. Nat. Commun. 5, 4462 (2014).
Liebl, D., Robert-Genthon, M., Job, V., Cogoni, V. & Attrée, I. Baseplate part TssK and spatio-temporal meeting of T6SS in Pseudomonas aeruginosa. Front. Microbiol. 10, 1615 (2019).
Records, A. R. & Gross, D. C. Sensor kinases RetS and LadS regulate Pseudomonas syringae sort VI secretion and virulence elements. J. Bacteriol. 192, 3584–3596 (2010).
Basler, M. & Mekalanos, J. J. Type 6 secretion dynamics inside and between bacterial cells. Science 337, 815–815 (2012).
Baker, A. E. et al. Flagellar stators stimulate c-di-GMP manufacturing by Pseudomonas aeruginosa. J. Bacteriol. 201, e00741–18 (2019).
Kulasekara, B. R. et al. c-di-GMP heterogeneity is generated by the chemotaxis equipment to manage flagellar motility. Elife 2, e01402 (2013).
Kilmury, S. L. N. & Burrows, L. L. The Pseudomonas aeruginosa PilSR two-component system regulates each twitching and swimming motilities. mBio 9, e01310–18 (2018).
Soscia, C., Hachani, A., Bernadac, A., Filloux, A. & Bleves, S. Cross discuss between sort III secretion and flagellar meeting methods in Pseudomonas aeruginosa. J. Bacteriol. 189, 3124–3132 (2007).
Oladosu, V. I., Park, S. & Sauer, Ok. Flip the swap: the position of FleQ in modulating the transition between the free-living and sessile mode of progress in Pseudomonas aeruginosa. J. Bacteriol. 206, e0036523 (2024).
Zhang, X. et al. NrtR mediated regulation of H1-T6SS in Pseudomonas aeruginosa. Microbiol. Spectr. 10, e01858-21 (2022).
Dadashi, M., Chen, L., Nasimian, A., Ghavami, S. & Duan, Ok. Putative RNA ligase RtcB impacts the swap between T6SS and T3SS in Pseudomonas aeruginosa. Int. J. Mol. Sci. 22, 12561 (2021).
Wimmi, S. et al. Dynamic relocalization of cytosolic sort III secretion system elements prevents untimely protein secretion at low exterior pH. Nat. Commun. 12, 1625 (2021).
Almblad, H. et al. Erratum for Almblad et al., the cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic Di-GMP. J. Bacteriol. 197, 2731–2731 (2015).
Dasgupta, N., Ferrell, E. P., Kanack, Ok. J., West, S. E. H. & Ramphal, R. fleQ, the gene encoding the foremost flagellar regulator of Pseudomonas aeruginosa, Is σ 70 dependent and is downregulated by Vfr, a homolog of Escherichia coli Cyclic AMP receptor protein. J. Bacteriol. 184, 5240–5250 (2002).
Li, Y., Chen, L., Zhang, P., Bhagirath, A. Y. & Duan, Ok. ClpV3 of the H3-Type VI secretion system (H3-T6SS) impacts a number of virulence elements in Pseudomonas aeruginosa. Front. Microbiol. 11, 1096 (2020).
Rietsch, A. & Mekalanos, J. J. Metabolic regulation of sort III secretion gene expression in Pseudomonas aeruginosa. Mol. Microbiol. 59, 807–820 (2006).
Luo, Y. et al. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa floor behaviors. mBio 6, e02456–14 (2015).
Speare, L., Jackson, A. & Septer, A. N. Calcium promotes T6SS-mediated killing and aggregation between competing symbionts. Microbiol. Spectr. 10, e0139722 (2022).
Lu, D. et al. Structural insights into the T 6 SS effector protein Tse 3 and the Tse 3– Tsi 3 advanced from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol. Microbiol. 92, 1092–1112 (2014).
Li, S. et al. Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS through a T3SS chaperone. Nat. Commun. 13, 6684 (2022).
Belhart, Ok., Sisti, F., Gestal, M. C. & Fernández, J. Bordetella bronchiseptica diguanylate cyclase BdcB inhibits the sort three secretion system and impacts the immune response. Sci. Rep. 13, 7157 (2023).
Cai, Y. & Webb, J. S. Optimization of nitric oxide donors for investigating biofilm dispersal response in Pseudomonas aeruginosa scientific isolates. Appl. Microbiol. Biotechnol. 104, 8859–8869 (2020).
Muhl, D. & Filloux, A. Site-directed mutagenesis and gene deletion utilizing reverse genetics. Methods Mol. Biol. 1149, 521–539 (2014).
Schlechter, R. O. et al. Chromatic micro organism—a broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in micro organism. Front. Microbiol. 9, 3052 (2018).
Chuanchuen, R., Narasaki, C. T. & Schweizer, H. P. Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. Biotechniques 33, 760–763 (2002).
Lampaki, D., Diepold, A. & Glatter, T. In-depth quantitative proteomics evaluation of the Pseudomonas aeruginosa secretome. Methods Mol. Biol. 2721, 197–211 (2024).
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, Ok. S. & Ralser, M. DIA-NN: neural networks and interference correction allow deep proteome protection in excessive throughput. Nat. Methods 17, 41–44 (2020).
Ahrné, E., Molzahn, L., Glatter, T. & Schmidt, A. Critical evaluation of proteome-wide label-free absolute abundance estimation methods. Proteomics 13, 2567–2578 (2013).
Glatter, T. et al. Large-scale quantitative evaluation of various in-solution protein digestion protocols reveals superior cleavage effectivity of tandem Lys-C/trypsin proteolysis over trypsin digestion. J. Proteome Res. 11, 5145–5156 (2012).
Skruzny, M., Pohl, E., Gnoth, S., Malengo, G. & Sourjik, V. The protein structure of the endocytic coat analyzed by FRET microscopy. Mol. Syst. Biol. 16, e9009 (2020).
Yadavalli, S. S. et al. Functional determinants of a small protein controlling a broadly conserved bacterial sensor kinase. J. Bacteriol. 202, e00305–20 (2020).
Roszik, J., Szöllősi, J. & Vereb, G. AccPbFRET: an ImageJ plugin for semi-automatic, totally corrected evaluation of acceptor photobleaching FRET photos. BMC Bioinformatics 9, 346 (2008).
Coffey, B. M. & Anderson, G. G. Biofilm formation within the 96-well microtiter plate. Methods Mol. Biol. 1149, 631–641 (2014).
Ha, D.-G., Kuchma, S. L. & O’Toole, G. A. Plate-based assay for swimming motility in Pseudomonas aeruginosa. Methods Mol. Biol. 1149, 59–65 (2014).
Colley, B. et al. SiaA/D interconnects c-di-GMP and RsmA signaling to coordinate mobile aggregation of Pseudomonas aeruginosa in response to environmental circumstances. Front. Microbiol. 7, 179 (2016).
Brencic, A. & Lory, S. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol. Microbiol. 72, 612–632 (2009).
Burrowes, E., Baysse, C., Adams, C. & O’Gara, F. Influence of the regulatory protein RsmA on mobile capabilities in Pseudomonas aeruginosa PAO1, as revealed by transcriptome evaluation. Microbiology 152, 405–418 (2006).
This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s42003-025-08693-6
and if you wish to take away this text from our web site please contact us
