This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09394-0
and if you wish to take away this text from our web site please contact us
Manzoor, U., Mujica Roncery, L., Raabe, D. & Souza Filho, I. R. Sustainable nickel enabled by hydrogen-based discount. Nature 641, 365–373 (2025).
Spreitzer, D. & Schenk, J. Reduction of iron oxides with hydrogen—a evaluate. Steel Res. Int. 90, 1900108 (2019).
Chee, S. W., Lunkenbein, T., Schlögl, R. & Roldán Cuenya, B. Operando electron microscopy of catalysts: the lacking cornerstone in heterogeneous catalysis analysis? Chem. Rev. 123, 13374–13418 (2023).
Chenna, S., Banerjee, R. & Crozier, P. A. Atomic-scale commentary of the Ni activation course of for partial oxidation of methane utilizing in situ environmental TEM. ChemCatChem 3, 1051–1059 (2011).
Zeng, L., Cheng, Z., Fan, J. A., Fan, L. S. & Gong, J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem. 2, 349–364 (2018).
Wei, S., Ma, Y. & Raabe, D. One step from oxides to sustainable bulk alloys. Nature 633, 816–822 (2024).
Kim, J. Y., Rodriguez, J. A., Hanson, J. C., Frenkel, A. I. & Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic results within the formation of suboxides. J. Am. Chem. Soc. 125, 10684–10692 (2003).
Wang, X., Hanson, J. C., Frenkel, A. I., Kim, J.-Y. & Rodriguez, J. A. Time-resolved research for the mechanism of discount of copper oxides with carbon monoxide: complicated conduct of lattice oxygen and the formation of suboxides. J. Phys. Chem. B 108, 13667–13673 (2004).
Rodriguez, J. A., Hanson, J. C., Frenkel, A. I., Kim, J. Y. & Pérez, M. Experimental and theoretical research on the response of H2 with NiO: Role of O vacancies and mechanism for oxide discount. J. Am. Chem. Soc. 124, 346–354 (2002).
Luo, L. et al. Atomic origins of water-vapour-promoted alloy oxidation. Nat. Mater. 17, 514–518 (2018).
Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).
Zou, L., Li, J., Zakharov, D. N., Stach, E. A. & Zhou, G. In situ atomic-scale imaging of the metallic/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).
Yuan, W. et al. Visualizing H2O molecules reacting at TiO2 lively websites with transmission electron microscopy. Science 367, 428–430 (2020).
Lagrow, A. P., Ward, M. R., Lloyd, D. C., Gai, P. L. & Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139, 179–185 (2017).
Sun, X. et al. Atomic origin of the autocatalytic discount of monoclinic CuO in a hydrogen ambiance. J. Phys. Chem. Lett. 12, 9547–9556 (2021).
Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interaction between metallic nanoparticles and oxide assist below redox situations. Science 376, 4–8 (2022).
Rukini, A., Rhamdhani, M. A., Brooks, G. A. & Van den Bulck, A. Metals manufacturing and metallic oxides discount utilizing hydrogen: a evaluate. J. Sustain. Metall. 8, 1–24 (2022).
Chen, J. & Hayes, P. C. Mechanisms and kinetics of discount of strong NiO in CO/CO2 and CO/Ar fuel mixtures. Metall. Mater. Trans. B 50, 2623–2635 (2019).
Krasuk, J. H. & Smith, J. M. Kinetics of discount of nickel oxide with CO. AIChE J. 18, 506–512 (1972).
Antola, O., Holappa, L. & Paschen, P. Nickel ore discount by hydrogen and carbon monoxide containing gases. Miner. Process. Extr. Metall. Rev. 15, 169–179 (1995).
Scholz, J. J. & Langell, M. A. Kinetic evaluation of floor discount in transition metallic oxide single crystals. Surf. Sci. 164, 543–557 (1985).
Wang, J. et al. Effect of the chemical states of copper on methanol decomposition and oxidation. J. Phys. Chem. C 128, 4559–4572 (2024).
Swallow, J. E. N. et al. Revealing the position of CO throughout CO2 hydrogenation on Cu surfaces with in situ comfortable X-ray spectroscopy. J. Am. Chem. Soc. 145, 6730–6740 (2023).
Peck, M. A. & Langell, M. A. Comparison of nanoscaled and bulk NiO structural and environmental traits by XRD, XAFS, and XPS. Chem. Mater. 24, 4483–4490 (2012).
Furstenau, R. P., McDougall, G. & Langell, M. A. Initial phases of hydrogen discount of NiO(100). Surf. Sci. 150, 55–79 (1985).
Norby, T. Protonic defects in oxides and their attainable position in excessive temperature oxidation. J. Phys. IV 3, C9-99–C9-106 (1993).
Li, S., Ding, W., Meitzner, G. D. & Iglesia, E. Spectroscopic and transient kinetic research of web site necessities in iron-catalyzed Fischer–Tropsch synthesis. J. Phys. Chem. B 106, 85–91 (2002).
Janbroers, S., Crozier, P. A., Zandbergen, H. W. & Kooyman, P. J. A mannequin research on the carburization technique of iron-based Fischer–Tropsch catalysts utilizing in situ TEM–EELS. Appl. Catal. B 102, 521–527 (2011).
Andersson, D. A., Simak, S. I., Skorodumova, N. V., Abrikosov, I. A. & Johansson, B. Optimization of ionic conductivity in doped ceria. Proc. Natl Acad. Sci. USA 103, 3518–3521 (2006).
Matsubu, J. C. et al. Adsorbate-mediated sturdy metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).
Sun, X. et al. Atomic‐scale mechanism of unidirectional oxide development. Adv. Funct. Mater. 30, 1906504 (2020).
Boyes, E. D. & Gai, P. L. Environmental excessive decision electron microscopy and functions to chemical science. Ultramicroscopy 67, 219–232 (1997).
Gai, P. L. et al. Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bull. 32, 1044–1050 (2007).
Gai, P. L., Lari, L., Ward, M. R. & Boyes, E. D. Visualisation of single atom dynamics and their position in nanocatalysts below managed response environments. Chem. Phys. Lett. 592, 355–359 (2014).
LaGrow, A. P., Lloyd, D. C., Gai, P. L. & Boyes, E. D. In situ scanning transmission electron microscopy of Ni nanoparticle redispersion by way of the discount of hole NiO. Chem. Mater. 30, 197–203 (2018).
Helveg, S. et al. Atomic-scale imaging of carbon nanofibre development. Nature 427, 426–429 (2004).
Yoshida, H. et al. Visualizing fuel molecules interacting with supported nanoparticulate catalysts at response situations. Science 335, 317–319 (2012).
Xie, D. G. et al. In situ research of the initiation of hydrogen bubbles on the aluminium metallic/oxide interface. Nat. Mater. 14, 899–903 (2015).
Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges within the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons with concept. Phys. Rev. B 26, 614–635 (1982).
Sparrow, T. G., Williams, B. G., Rao, C. N. R. & Thomas, J. M. L3/L2 white-line depth ratios within the electron energy-loss spectra of threed transition-metal oxides. Chem. Phys. Lett. 108, 547–550 (1984).
Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C. & McIntyre, N. S. New interpretations of XPS spectra of nickel metallic and oxides. Surf. Sci. 600, 1771–1779 (2006).
Carley, A. F., Jackson, S. D., O’Shea, J. N. & Roberts, M. W. The formation and characterisation of Ni3+—an X-ray photoelectron spectroscopic investigation of potassium-doped Ni (110)–O. Surf. Sci. 440, L868–L874 (1999).
McIntyre, N. S. & Zetaruk, D. G. X-ray photoelectron spectroscopic research of iron oxides. Anal. Chem. 49, 1521–1529 (1977).
Zhao, X. et al. Multiple metal-nitrogen bonds synergistically boosting the exercise and sturdiness of high-entropy alloy electrocatalysts. J. Am. Chem. Soc. 146, 3010–3022 (2024).
Anisimov, V. I., Zaanen, J. & Andersen, O. Ok. Band concept and Mott insulators: Hubbard U as a substitute of Stoner I. Phys. Rev. B 44, 943 (1991).
Kresse, G. & Furthmüler, J. Efficient iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio complete power calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758 (1999).
Xu, Q., Cheah, S. & Zhao, Y. Initial discount of the NiO(100) floor in hydrogen. J. Chem. Phys. 139, 024704 (2013).
Ferrari, A. M., Pisani, C., Cinquini, F., Giordano, L. & Pacchioni, G. Cationic and anionic vacancies on the NiO(100) floor: DFT + U and hybrid practical density practical concept calculations. J. Chem. Phys. 127, 174711 (2007).
Jeon, J., Yu, B. D. & Hyun, S. Adsorption properties of transition metallic atoms on strongly correlated NiO(001) surfaces with floor oxygen vacancies. Curr. Appl. Phys. 15, 679–682 (2015).
Silvi, B. & Savin, A. Classification of chemical bonds primarily based on topological evaluation of electron localization features. Nature 371, 683–686 (1994).
Jónsson, H., Mills, G. & Jacobsen, Ok. W. in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J. et al.) 385–404 (World Scientific, 1998).
He, Y., Dulub, O., Cheng, H., Selloni, A. & Diebold, U. Evidence for the predominance of subsurface defects on decreased anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009).
Yu, J., Rosso, Ok. M. & Bruemmer, S. M. Charge and ion transport in NiO and elements of Ni oxidation from first ideas. J. Phys. Chem. C 116, 1948–1954 (2012).
Wagner Jr, J. B. in Defects and Transport in Oxides (eds Seltzer, M. S. & Jaffee, R. I.) 283–301 (Springer, 1974).
Malyshev, O. B. & Middleman, Ok. J. In situ ultrahigh vacuum residual fuel analyzer ‘calibration’. J. Vac. Sci. Technol. A 26, 1474–1479 (2008).
This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09394-0
and if you wish to take away this text from our web site please contact us
