Chemical evolution imprints within the uncommon isotopes of close by M dwarfs

This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41550-025-02641-4
and if you wish to take away this text from our web site please contact us


  • Henry, T. J., Kirkpatrick, J. D. & Simons, D. A. The Solar Neighborhood. I. Standard spectral varieties (K5–M8) for northern dwarfs inside eight parsecs. Astron. J. 108, 1437 (1994).

    ADS 

    Google Scholar
     

  • Reylé, C. et al. The 10 parsec pattern within the Gaia period. Astron. Astrophys. 650, A201 (2021).


    Google Scholar
     

  • Hayashi, C. & Nakano, T. Evolution of stars of small lots within the pre-main-sequence levels. Prog. Theor. Phys. 30, 460–474 (1963).

    ADS 

    Google Scholar
     

  • Tsuji, T. Near-infrared spectroscopy of M dwarfs. IV. A preliminary survey on the carbon isotopic ratio in M dwarfs. Publ. Astron. Soc. Jpn 68, 84 (2016).

    ADS 

    Google Scholar
     

  • Zhang, Y. et al. 13CO-rich ambiance of a younger accreting super-Jupiter. Nature 595, 370–372 (2021).

    ADS 

    Google Scholar
     

  • Xuan, J. W. et al. Validation of elemental and isotopic abundances in late-M spectral varieties with the benchmark HIP 55507 AB system. Astrophys. J. 962, 10 (2024).

    ADS 

    Google Scholar
     

  • Botelho, R. B. et al. Carbon, isotopic ratio 12C/13C, and nitrogen in photo voltaic twins: constraints for the chemical evolution of the native disc. Mon. Not. R. Astron. Soc. 499, 2196–2213 (2020).

    ADS 

    Google Scholar
     

  • Crossfield, I. J. M. et al. Unusual isotopic abundances in a completely convective stellar binary. Astrophys. J. 871, L3 (2019).

    ADS 

    Google Scholar
     

  • Prantzos, N., Aubert, O. & Audouze, J. Evolution of the carbon and oxygen isotopes within the Galaxy. Astron. Astrophys. 309, 760–774 (1996).

    ADS 

    Google Scholar
     

  • Romano, D. & Matteucci, F. Nova nucleosynthesis and galactic evolution of the CNO isotopes. Mon. Not. R. Astron. Soc. 342, 185–198 (2003).

    ADS 

    Google Scholar
     

  • Zhang, Z.-Y., Romano, D., Ivison, R. J., Papadopoulos, P. P. & Matteucci, F. Stellar populations dominated by large stars in dusty starburst galaxies throughout cosmic time. Nature 558, 260–263 (2018).

    ADS 

    Google Scholar
     

  • Romano, D. The evolution of CNO parts in galaxies. Astron. Astrophys. Rev. 30, 7 (2022).

    ADS 

    Google Scholar
     

  • Donati, J.-F. et al. SPIRou: NIR velocimetry and spectropolarimetry on the CFHT. Mon. Not. R. Astron. Soc. 498, 5684–5703 (2020).

    ADS 

    Google Scholar
     

  • Cristofari, P. I. et al. Measuring small-scale magnetic fields of 44 M dwarfs from SPIRou spectra with ZeeTurbo. Mon. Not. R. Astron. Soc. 526, 5648–5674 (2023).

    ADS 

    Google Scholar
     

  • Engle, S. G. & Guinan, E. F. Living with a crimson dwarf: the rotation–age relationships of M dwarfs. Astrophys. J. Lett. 954, L50 (2023).

    ADS 

    Google Scholar
     

  • Romano, D. et al. The Gaia-ESO survey: galactic evolution of lithium from iDR6. Astron. Astrophys. 653, A72 (2021).


    Google Scholar
     

  • Cristofari, P. I. et al. Estimating elementary parameters of close by M dwarfs from SPIRou spectra. Mon. Not. R. Astron. Soc. 511, 1893–1912 (2022).

    ADS 

    Google Scholar
     

  • Mollière, P. et al. petitRADTRANS: a Python radiative switch bundle for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).


    Google Scholar
     

  • Kitzmann, D., Stock, J. W. & Patzer, A. B. C. FASTCHEM COND: equilibrium chemistry with condensation and rainout for cool planetary and stellar environments. Mon. Not. R. Astron. Soc. 527, 7263–7283 (2023).

    ADS 

    Google Scholar
     

  • Kobayashi, C., Karakas, A. I. & Umeda, H. The evolution of isotope ratios within the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 414, 3231–3250 (2011).

    ADS 

    Google Scholar
     

  • Nomoto, Okay., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Ann. Rev. Astron. Astrophys. 51, 457–509 (2013).

    ADS 

    Google Scholar
     

  • Renzini, A. & Voli, M. Advanced evolutionary levels of intermediate-mass stars. I – Evolution of floor compositions. Astron. Astrophys. 94, 175 (1981).

    ADS 

    Google Scholar
     

  • Wiescher, M., Görres, J., Uberseder, E., Imbriani, G. & Pignatari, M. The cold and warm CNO cycles. Ann. Rev. Nucl. Part. Sci. 60, 381–404 (2010).

    ADS 

    Google Scholar
     

  • Karakas, A. I. & Lattanzio, J. C. The Dawes Review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ. Astron. Soc. Aust. 31, e030 (2014).

    ADS 

    Google Scholar
     

  • Hirschi, R. Very low-metallicity large stars: pre-SN evolution fashions and first nitrogen manufacturing. Astron. Astrophys. 461, 571–583 (2007).

    ADS 

    Google Scholar
     

  • Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of rotating large stars within the metallicity vary −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. 237, 13 (2018).

    ADS 

    Google Scholar
     

  • Romano, D., Karakas, A. I., Tosi, M. & Matteucci, F. Quantifying the uncertainties of chemical evolution research – II. Stellar yields. Astron. Astrophys. 522, A32 (2010).

    ADS 

    Google Scholar
     

  • Meynet, G., Ekström, S. & Maeder, A. The early star generations: the dominant impact of rotation on the CNO yields. Astron. Astrophys. 447, 623–639 (2006).

    ADS 

    Google Scholar
     

  • Chiappini, C. et al. A brand new imprint of quick rotators: low 12C/13C ratios in extraordinarily metal-poor halo stars. Astron. Astrophys. 479, L9–L12 (2008).

    ADS 

    Google Scholar
     

  • Spite, M., Spite, F. & Barbuy, B. 12C/13C ratio and CNO abundances within the classical very previous metal-poor dwarf HD 140283. Astron. Astrophys. 652, A97 (2021).

    ADS 

    Google Scholar
     

  • Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M. & Wyckoff, S. The 12C/13C isotope gradient derived from millimeter transitions of CN: the case for galactic chemical evolution. Astrophys. J. 634, 1126–1132 (2005).

    ADS 

    Google Scholar
     

  • Kubryk, M., Prantzos, N. & Athanassoula, E. Radial migration in a bar-dominated disc galaxy – I. Impact on chemical evolution. Mon. Not. R. Astron. Soc. 436, 1479–1491 (2013).

    ADS 

    Google Scholar
     

  • Fuhrmann, Okay., Chini, R., Kaderhandt, L. & Chen, Z. On the native stellar populations. Mon. Not. R. Astron. Soc. 464, 2610–2621 (2017).

    ADS 

    Google Scholar
     

  • Mann, A. W., Feiden, G. A., Gaidos, E. & Boyajian, T. How to constrain your M dwarf: measuring efficient temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).

    ADS 

    Google Scholar
     

  • Heger, A. & Woosley, S. E. The nucleosynthetic signature of inhabitants III. Astrophys. J. 567, 532–543 (2002).

    ADS 

    Google Scholar
     

  • Wilson, T. L. Isotopes within the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143 (1999).

    ADS 

    Google Scholar
     

  • Ayres, T. R., Lyons, J. R., Ludwig, H.-G., Caffau, E. & Wedemeyer-Böhm, S. Is the Sun lighter than the Earth? Isotopic CO within the photosphere, seen via the lens of three-dimensional spectrum synthesis. Astrophys. J. 765, 46 (2013).

    ADS 

    Google Scholar
     

  • Molaro, P. et al. The 12C/13C isotopic ratio on the daybreak of chemical evolution. Astron. Astrophys. 679, A72 (2023).


    Google Scholar
     

  • Ryan, S. G., Aoki, W., Norris, J. E. & Beers, T. C. The origins of two courses of carbon-enhanced, metal-poor stars. Astrophys. J. 635, 349 (2005).

    ADS 

    Google Scholar
     

  • Brandl, B. et al. METIS: the Mid-infrared ELT Imager and Spectrograph. The Messenger 182, 22–26 (2021).

    ADS 

    Google Scholar
     

  • Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).


    Google Scholar
     

  • Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006).

    ADS 

    Google Scholar
     

  • Cristofari, P. I. et al. Estimating the atmospheric properties of 44 M dwarfs from SPIRou spectra. Mon. Not. R. Astron. Soc. 516, 3802–3820 (2022).

    ADS 

    Google Scholar
     

  • Cristofari, P. I. et al. Constraining atmospheric parameters and floor magnetic fields with ZeeTurbo: an software to SPIRou spectra. Mon. Not. R. Astron. Soc. 522, 1342–1357 (2023).

    ADS 

    Google Scholar
     

  • Cook, N. J. et al. APERO: A PipelinE to Reduce Observations—demonstration with SPIRou. Publ. Astron. Soc. Pac. 134, 114509 (2022).

    ADS 

    Google Scholar
     

  • Tennyson, J. et al. The 2024 launch of the ExoMol database: molecular line lists for exoplanet and different scorching atmospheres. J. Quant. Spectrosc. Radiat. Transf. 326, 109083 (2024).


    Google Scholar
     

  • Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    ADS 

    Google Scholar
     

  • Kurucz, R. L. in Stellar Atmospheres: Beyond Classical Models NATO ASI Series (eds Crivellari, L. et al.) 441–448 (Springer, 1991).

  • Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (model 5.12) (National Institute of Standards and Technology, 2024); https://doi.org/10.18434/T4W30F

  • Zhang, Y. et al. Elemental abundances of the super-Neptune WASP-107b from Hubble and Spitzer photometry. Astron. J. 165, 62 (2023).

    ADS 

    Google Scholar
     

  • González Picos, D. et al. The ESO SupJup Survey – II. The 12C/13C isotope ratios of three younger brown dwarfs with CRIRES+. Astron. Astrophys. 689, A212 (2024).


    Google Scholar
     

  • Czesla, S. et al. PyA: Python astronomy-related packages (Astrophysics Source Code Library, 2019).

  • Husser, T.-O. et al. A brand new intensive library of PHOENIX stellar atmospheres and artificial spectra. Astron. Astrophys. 553, A6 (2013).


    Google Scholar
     

  • Grant, D. & Wakeford, H. ExoTiC-LD: thirty seconds to stellar limb-darkening coefficients. J. Open Source Softw. 9, 6816 (2024).


    Google Scholar
     

  • Hauschildt, P. H., Allard, F. & Baron, E. The NextGen mannequin ambiance grid for 3000 ≤ Teff ≤ 10,000 Okay. Astrophys. J. 512, 377 (1999).

    ADS 

    Google Scholar
     

  • Hahlin, A. et al. Multi-scale magnetic subject investigation of the M-dwarf eclipsing binary CU Cancri. Astron. Astrophys. 684, A175 (2024).


    Google Scholar
     

  • Ruffio, J.-B. et al. Detecting exomoons from radial velocity measurements of self-luminous planets: software to observations of HR 7672 B and future prospects. Astron. J. 165, 113 (2023).

    ADS 

    Google Scholar
     

  • Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest Algorithm. Open J. Astrophys. 2, 10 (2019).


    Google Scholar
     

  • Buchner, J. PyMultiNest: Python interface for MultiNest (Astrophysics Source Code Library, 2016).

  • Lawson, C. L. & Hanson, R. J. Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995).

  • Kass, R. E. & Raftery, A. E. Bayes elements. J. Am. Stat. Assoc. 90, 773–795 (1995).

    MathSciNet 

    Google Scholar
     

  • Benneke, B. & Seager, S. How to differentiate between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    ADS 

    Google Scholar
     

  • de Regt, S. et al. The ESO SupJup Survey – I. Chemical and isotopic characterisation of the late L-dwarf DENIS J0255-4700 with CRIRES+. Astron. Astrophys. 688, A116 (2024).


    Google Scholar
     

  • Polyansky, O. L. et al. ExoMol molecular line lists XIX: high-accuracy computed scorching line lists for ({{rm{H}}}_{2}^{18}rm{O}) and ({{rm{H}}}_{2}^{18}rm{O}). Mon. Not. R. Astron. Soc. 466, 1363–1371 (2017).

    ADS 

    Google Scholar
     

  • González Picos, D., Snellen, I. & de Regt, S. Chemical evolution imprints in uncommon isotopes of close by M dwarfs. Zenodo (2025).

  • Gaia Collaboration et al. Gaia Early Data Release 3: abstract of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

  • Lyons, J. R., Gharib-Nezhad, E. & Ayres, T. R. A lightweight carbon isotope composition for the Sun. Nat. Commun. 9, 908 (2018).

    ADS 

    Google Scholar
     

  • Wang, X.-L., Fang, M., Liu, Y., Zhang, M.-M. & Cui, W.-Y. LAMOST reveals long-lived protoplanetary disks. Astron. J. 169, 141 (2025).


    Google Scholar
     

  • Ribas, I. et al. A candidate super-Earth planet orbiting close to the snow line of Barnard’s star. Nature 563, 365–368 (2018).

    ADS 

    Google Scholar
     

  • Bouvier, A. & Wadhwa, M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010).

    ADS 

    Google Scholar
     

  • Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 imaginative and prescient. Astron. Astrophys. 653, A141 (2021).

    ADS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s41550-025-02641-4
    and if you wish to take away this text from our web site please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *