This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09471-4
and if you wish to take away this text from our web site please contact us
Lyons, T. W. et al. Co‐evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 22, 572–586 (2024).
Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).
Holland, H. D. The oxygenation of the environment and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006).
Kasting, J. F. Earth’s early environment. Science 259, 920–926 (1993).
Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope proof for the stepwise oxidation of the Proterozoic atmosphere. Nature 359, 605–609 (1992).
Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation occasion: environmental perturbations and biogeochemical biking. Earth Sci. Rev. 110, 26–57 (2012).
Krause, A. J. et al. Stepwise oxygenation of the Paleozoic environment. Nat. Commun. 9, 4081 (2018).
Wallace, M. W. et al. Oxygenation historical past of the Neoproterozoic to early Phanerozoic and the rise of land crops. Earth Planet. Sci. Lett. 466, 12–19 (2017).
Lu, W. et al. Late inception of a resiliently oxygenated higher ocean. Science 5372, eaar5372 (2018).
Liu, X.-M. et al. Tracing Earth’s O2 evolution utilizing Zn/Fe ratios in marine carbonates. Geochem. Perspect. Lett. 2, 24–34 (2016).
Pogge Von Strandmann, P. A. E. et al. Selenium isotope proof for progressive oxidation of the Neoproterozoic biosphere. Nat. Commun. 6, 10157 (2015).
Dahl, T. W. et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial crops and huge predatory fish. Proc. Natl Acad. Sci. USA 107, 17911–17915 (2010).
Stolper, D. A. & Keller, C. B. A report of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).
Stockey, R. G. et al. Sustained will increase in atmospheric oxygen and marine productiveness within the Neoproterozoic and Palaeozoic eras. Nat. Geosci. 17, 667–674 (2024).
Krause, A. J., Mills, B. J. W. W., Merdith, A. S., Lenton, T. M. & Poulton, S. W. Extreme variability in atmospheric oxygen ranges within the late Precambrian. Sci. Adv. 8, eabm8191 (2022).
Cole, D. B. et al. A shale-hosted Cr isotope report of low atmospheric oxygen throughout the Proterozoic. Geology 44, 555–558 (2016).
Bao, H. Sulfate: a time capsule for Earth’s O2, O3, and H2O. Chem. Geol. 395, 108–118 (2015).
Planavsky, N. J., Reinhard, C. T., Isson, T. T., Ozaki, Okay. & Crockford, P. W. Large mass-independent oxygen isotope fractionations in mid-Proterozoic sediments: proof for a low-oxygen environment? Astrobiology 20, 628–636 (2020).
Cao, X. & Bao, H. Dynamic mannequin constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth. Proc. Natl Acad. Sci. USA 110, 14546–14550 (2013).
Poulton, S. W. et al. A 200-million-year delay in everlasting atmospheric oxygenation. Nature 592, 232–236 (2021).
Farquhar, J., Bao, H. & Thiemens, M. Atmospheric affect of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
Uveges, B. T., Izon, G., Ono, S., Beukes, N. J. & Summons, R. E. Reconciling discrepant minor sulfur isotope data of the Great Oxidation Event. Nat. Commun. 14, 1–12 (2023).
Mitchell, R. N., Feng, L., Zhang, Z. & Peng, P. Carbonate-organic decoupling throughout the first Neoproterozoic carbon isotope tour. Innov. Geosci. 1, 100046 (2023).
Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).
Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).
Ye, Q. et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology 43, 507–510 (2015).
Darroch, S. A. F., Smith, E. F., Laflamme, M. & Erwin, D. H. Ediacaran extinction and Cambrian explosion. Trends Ecol. Evol. 33, 653–663 (2018).
Catling, D. C. & Zahnle, Okay. J. The Archean environment. Sci. Adv. 6, eaax1420 (2020).
Turner, E. C. & Bekker, A. Thick sulfate evaporite accumulations marking a mid-Neoproterozoic oxygenation occasion (Ten Stone Formation, Northwest Territories, Canada). Geol. Soc. Am Bull. 128, B31268.1 (2015).
Reinhard, C. T. & Planavsky, N. J. The historical past of ocean oxygenation. Ann. Rev. Mar. Sci. 14, 331–353 (2022).
Wang, H. et al. A benthic oxygen oasis within the early Neoproterozoic ocean. Precambrian Res. 355, 106085 (2021).
Wang, H. et al. Spatiotemporal redox heterogeneity and transient marine shelf oxygenation within the Mesoproterozoic ocean. Geochim. Cosmochim. Acta 270, 201–217 (2020).
Kohl, I. & Bao, H. Triple-oxygen-isotope dedication of molecular oxygen incorporation in sulfate produced throughout abiotic pyrite oxidation (pH=2–11). Geochim. Cosmochim. Acta 75, 1785–1798 (2011).
Balci, N., Shanks, W. C., Mayer, B. & Mandernack, Okay. W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 71, 3796–3811 (2007).
Killingsworth, B. A. et al. Towards a holistic sulfate–water–O2 triple oxygen isotope systematics. Chem. Geol. 588, 120678 (2022).
Crockford, P. W. et al. Depositional controls on Δ′17O signatures of sedimentary sulfate. Geophys. Res. Lett. 52, e2024GL114184 (2025).
Hodgskiss, M. S. W., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productiveness collapse to finish Earth’s nice oxidation. Proc. Natl Acad. Sci. USA 116, 17207–17212 (2019).
Wang, H. et al. Sulfate triple-oxygen-isotope proof confirming oceanic oxygenation 570 million years in the past. Nat. Commun. 14, 4315 (2023).
Peng, Y., Hattori, S., Zuo, P., Ma, H. & Bao, H. Record of pre-industrial atmospheric sulfate in continental interiors. Nat. Geosci. 16, 619–624 (2023).
Crockford, P. W. et al. Claypool continued: extending the isotopic report of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).
Bao, H., Lyons, J. R. & Zhou, C. Triple oxygen isotope proof for elevated CO2 ranges after a Neoproterozoic glaciation. Nature 453, 504–506 (2008).
Waldeck, A. R. et al. Marine sulphate captures a Paleozoic transition to a contemporary terrestrial weathering atmosphere. Nat. Commun. 16, 2087 (2025).
Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and organic productiveness throughout the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).
Wostbrock, J. A. G., Cano, E. J. & Sharp, Z. D. An internally constant triple oxygen isotope calibration of requirements for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem. Geol. 533, 119432 (2020).
Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fireplace techniques and fluctuations in atmospheric oxygen focus. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006).
Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of uncommon sulphur isotope anomalies. Nature 497, 100–103 (2013).
Evans, S. D., Diamond, C. W., Droser, M. L. & Lyons, T. W. Dynamic oxygen and paired organic and ecological innovation throughout the second wave of the Ediacara Biota. Emerg. Top. Life Sci. 2, 223–233 (2018).
Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010).
Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the historical past of the worldwide carbon cycle. Science 339, 540–543 (2013).
Cramer, B. D. & Jarvis, I. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 309–343 (Elsevier, 2020).
Peng, Y. et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: proof from triple oxygen isotopes. Geology 42, 815–818 (2014).
Bao, H. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating answer. Anal. Chem. 78, 304–309 (2006).
Wei, Y., Yan, H., Peng, Y. & Bao, H. Quantitative conversion of sulfate oxygen for high-precision triple oxygen isotope evaluation. Anal. Chem. 96, 19387–19395 (2024).
Cao, X. & Bao, H. Small triple oxygen isotope variations in sulfate: mechanisms and functions. Rev. Mineral. Geochem. 86, 463–488 (2021).
Canfield, D. E., Knoll, A. H., Poulton, S. W., Narbonne, G. M. & Dunning, G. R. Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle. Am. J. Sci. 320, 97–124 (2020).
Zhang, Z. et al. Oldest-known Neoproterozoic carbon isotope tour: earlier onset of Neoproterozoic carbon cycle volatility. Gondwana Res. 94, 1–11 (2021).
Halverson, G. P., Porter, S. M. & Shields, G. A. In Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 495–519 (Elsevier, 2020).
Kendall, B., Creaser, R. A. & Selby, D. Re–Os geochronology of postglacial black shales in Australia: constraints on the timing of ‘Sturtian’ glaciation. Geology 34, 729–732 (2006).
Condon, D. et al. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).
Lu, M. et al. The DOUNCE occasion on the prime of the Ediacaran Doushantuo Formation, South China: broad stratigraphic incidence and non-diagenetic origin. Precambrian Res. 225, 86–109 (2013).
Fan, R., Deng, S. H. & Zhang, X. L. Significant carbon isotope excursions within the Cambrian and their implications for world correlations. Sci. China Earth Sci. 54, 1686–1695 (2011).
Wen, J. & Thiemens, M. H. Multi‐isotope research of the O(1D) + CO2 change and stratospheric penalties. J. Geophys. Res. Atmos. 98, 12801–12808 (1993).
Burke, A. et al. Sulfur isotopes in rivers: Insights into world weathering budgets, pyrite oxidation, and the fashionable sulfur cycle. Earth Planet. Sci. Lett. 496, 168–177 (2018).
Heidel, C. & Tichomirowa, M. The position of dissolved molecular oxygen in abiotic pyrite oxidation underneath acid pH circumstances—experiments with 18O-enriched molecular oxygen. Appl. Geochem. 25, 1664–1675 (2010).
Sahoo, S. Okay. et al. Oceanic oxygenation occasions within the anoxic Ediacaran ocean. Geobiology 14, 457–468 (2016).
Bao, H., Cao, X. & Hayles, J. A. Triple oxygen isotopes: elementary relationships and functions. Annu. Rev. Earth Planet Sci. 44, 463–492 (2016).
Planavsky, N. J. et al. A sedimentary report of the evolution of the worldwide marine phosphorus cycle. Geobiology 21, 168–174 (2022).
Shi, W. et al. Sulfur isotope proof for transient marine-shelf oxidation throughout the Ediacaran Shuram Excursion. Geology 46, 267–270 (2018).
Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006).
McFadden, Okay. A. et al. Pulsed oxidation and organic evolution within the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 105, 3197–3202 (2008).
This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09471-4
and if you wish to take away this text from our web site please contact us
