Snowfall lower lately undermines glacier well being and meltwater assets within the Northwestern Pamirs

This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s43247-025-02611-8
and if you wish to take away this text from our website please contact us


  • Hugonnet, R. et al. Accelerated world glacier mass loss within the early twenty-first century. Nature 592, 726–731 (2021).

    CAS 

    Google Scholar
     

  • Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater provide. Nat. Clim. Change 2021 11:7 11, 591–597 (2021).


    Google Scholar
     

  • Maussion, F. et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia reanalysis. J. Clim. 27, 1910–1927 (2014).


    Google Scholar
     

  • Huang, L. et al. Winter accumulation drives the spatial variations in glacier mass stability in High Mountain Asia. Sci. Bull. 67, 1967–1970 (2022).


    Google Scholar
     

  • Sakai, A. & Fujita, Okay. Contrasting glacier responses to current local weather change in High-Mountain Asia. Sci. Rep. 7, 13717 (2017).

  • Arndt, A. & Schneider, C. Spatial sample of glacier mass stability sensitivity to atmospheric forcing in High Mountain Asia. J. Glaciol. 69, 1–18 (2023).

  • Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 3, 618–632 (2022).

  • Pohl, E., Knoche, M., Gloaguen, R., Andermann, C. & Krause, P. Sensitivity evaluation and implications for floor processes from a hydrological modelling strategy within the Gunt catchment, excessive Pamir mountains. Earth Surf. Dynam 3, 333–362 (2015).


    Google Scholar
     

  • Armstrong, R. L. et al. Runoff from glacier ice and seasonal snow in High Asia: separating soften water sources in river move. Regional Environ. Change 19, 1249–1261 (2019).


    Google Scholar
     

  • Pohl, E., Gloaguen, R., Andermann, C. & Knoche, M. Glacier soften buffers river runoff within the Pamir Mountains. Water Resour. Res. 53, 2467–2489 (2017).


    Google Scholar
     

  • Fugger, S. et al. Hydrological regimes and evaporative flux partitioning on the climatic ends of High Mountain Asia. Environ. Res. Lett. 19, 044057 (2024).


    Google Scholar
     

  • Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    CAS 

    Google Scholar
     

  • Miles, E. et al. Health and sustainability of glaciers in High Mountain Asia. Nat. Commun. 12, 2868 (2021).

    CAS 

    Google Scholar
     

  • Knoche, M., Merz, R., Lindner, M. & Weise, S. M. Bridging glaciological and hydrological traits within the Pamir Mountains, Central Asia. Water 9, 422 (2017).


    Google Scholar
     

  • Kok, R. J. D., Kraaijenbrink, P. D., Tuinenburg, O. A., Bonekamp, P. N. & Immerzeel, W. W. Towards understanding the sample of glacier mass balances in High Mountain Asia utilizing regional climatic modelling. Cryosphere 14, 3215–3234 (2020).


    Google Scholar
     

  • Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J. & Dehecq, A. Manifestations and mechanisms of the Karakoram glacier anomaly. Nat. Geosci. 13, 8–16 (2020).

    CAS 

    Google Scholar
     

  • Bhattacharya, A. et al. High Mountain Asian glacier response to local weather revealed by multi-temporal satellite tv for pc observations for the reason that Nineteen Sixties. Nat. Commun. 12, 1–13 (2021).


    Google Scholar
     

  • Barandun, M. et al. Hot spots of glacier mass stability variability in Central Asia. Geophys. Res. Lett. 48, e2020GL092084 (2021).


    Google Scholar
     

  • Barandun, M. & Pohl, E. Central Asia’s spatiotemporal glacier response ambiguity resulting from information inconsistencies and regional simplifications. Cryosphere 17, 1343–1371 (2023).


    Google Scholar
     

  • World Glacier Monitoring Service (WGMS). Fluctuations of glaciers database (WGMS, 2012).

  • Barandun, M. et al. Re-analysis of seasonal mass stability at Abramov glacier 1968-2014. J. Glaciol. 61, 1103–1117 (2015).


    Google Scholar
     

  • Barandun, M. et al. The state and way forward for the cryosphere in Central Asia. Water Secur. 11, 100072 (2020).


    Google Scholar
     

  • Kronenberg, M. et al. Long-term firn and mass stability modelling for Abramov glacier within the data-scarce Pamir alay. Cryosphere 16, 5001–5022 (2022).


    Google Scholar
     

  • Buri, P. et al. Land floor modeling within the Himalayas: on the significance of evaporative fluxes for the water stability of a high-elevation catchment. Water Resour. Res. 59, e2022WR033841 (2023).


    Google Scholar
     

  • Azam, M. F. et al. Glaciohydrology of the Himalaya-Karakoram. Science 373, eabf3668 (2021).

  • Palazzi, E., Hardenberg, J. V. & Provenzale, A. Precipitation within the Hindu-Kush Karakoram Himalaya: observations and future eventualities. J. Geophys. Res. Atmos. 118, 85–100 (2013).


    Google Scholar
     

  • Zandler, H., Haag, I. & Samimi, C. Evaluation wants and temporal efficiency variations of gridded precipitation merchandise in peripheral mountain areas. Sci. Rep. 9, 1–15 (2019).

    CAS 

    Google Scholar
     

  • Zhou, X. et al. Added worth of kilometer-scale modeling over the third pole area: a cordex-cptp pilot examine. Clim. Dyn. 57, 1673–1687 (2021).


    Google Scholar
     

  • Sun, F. et al. Incorporating relative humidity improves the accuracy of precipitation part discrimination in High Mountain Asia. Atmos. Res. 271, 106094 (2022).

  • Miao, C. et al. Understanding the Asian water tower requires a redesigned precipitation statement technique. Proc. Natl Acad. Sci. 121, 2403557121 (2024).


    Google Scholar
     

  • Notarnicola, C. Overall detrimental traits for snow cowl extent and length in world mountain areas over 1982-2020. Sci. Rep. 12, 13731 (2022).

  • Fatichi, S., Ivanov, V. Y. & Caporali, E. A mechanistic ecohydrological mannequin to research complicated interactions in chilly and heat water-controlled environments: 1. theoretical framework and plot-scale evaluation. J. Adv. Model. Earth Syst. 4, M05002 (2012).

  • Jiang, J., Zhou, T., Chen, X. & Wu, B. Central Asian precipitation formed by the tropical pacific decadal variability and the Atlantic multidecadal variability. J. Clim. 34, 7541–7553 (2021).


    Google Scholar
     

  • Yao, M., Tang, H., Huang, G. & Wu, R. Interdecadal shifts of ENSO influences on spring Central Asian precipitation. npj Clim. Atmos. Sci. 7, 1–11 (2024).


    Google Scholar
     

  • Yan, D. et al. Solar exercise and the westerlies dominate decadal hydroclimatic modifications over arid Central Asia. Glob. Planet. Change 173, 53–60 (2019).


    Google Scholar
     

  • Chen, S., Rugenstein, J. Okay. & Mulch, A. Stable isotope composition of floor waters throughout the Pamir, Central Asia: implications of precipitation seasonality. J. Hydrol. 653, 132815 (2025).

    CAS 

    Google Scholar
     

  • Hunt, Okay. M. R. et al. Western disturbances and local weather variability: a overview of current developments. Weather Clim. Dyn. 6, 43–112 (2025).


    Google Scholar
     

  • Jiang, J., Zhou, T., Chen, X. & Zhang, L. Future modifications in precipitation over Central Asia based mostly on CMIP6 projections. Environ. Res. Lett. 15, 054009 (2020).

  • Hua, L., Zhao, T. & Zhong, L. Future modifications in drought over Central Asia below CMIP6 forcing eventualities. J. Hydrol. Regional Stud. 43, 101191 (2022).


    Google Scholar
     

  • Bonekamp, P. N., Collier, E. & Immerzeel, W. The affect of spatial decision, land use, and spinup time on resolving spatial precipitation patterns within the Himalayas. J. Hydrometeorol. 19, 1565–1581 (2018).


    Google Scholar
     

  • Collier, E. et al. The first ensemble of kilometer-scale simulations of a hydrological yr over the third pole. Clim. Dyn. 62, 7501–7518 (2024).


    Google Scholar
     

  • Giesen, R. H. & Oerlemans, J. Calibration of a floor mass stability mannequin for global-scale functions. Cryosphere 6, 1463–1481 (2012).


    Google Scholar
     

  • Jouberton, A. et al. Warming-induced monsoon precipitation part change intensifies glacier mass loss within the Southeastern Tibetan plateau. Proc. Natl Acad. Sci. USA 119, e2109796119 (2022).

    CAS 

    Google Scholar
     

  • Rounce, D. R. et al. Global glacier change within the twenty first century: each improve in temperature issues. Science 379, 78–83 (2023).

    CAS 

    Google Scholar
     

  • Aizen, V. B. et al. Stable-isotope and hint component time collection from Fedchenko glacier (Pamirs) snow/firn cores. J. Glaciol. 55, 275–291 (2009).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Warming triggers snowfall fraction loss thresholds in High-Mountain Asia. npj Clim. Atmos. Sci. 8, 1–11 (2025).


    Google Scholar
     

  • Bekchanov, M., Ringler, C., Bhaduri, A. & Jeuland, M. How would the Rogun Dam have an effect on water and power shortage in Central Asia? Water Int. 40, 856–876 (2015).


    Google Scholar
     

  • Mehmood, S. et al. Dominant controls of cold-season precipitation variability over the excessive mountains of Asia. npj Clim. Atmos. Sci. 5, 65 (2022).

  • Copernicus Climate Change Service. ERA5-land hourly information from 1950 to current (Copernicus Climate Change Service, 2019).

  • Muñoz-Sabater, J. et al. ERA5-land: a state-of-the-art world reanalysis dataset for land functions. Earth Syst. Sci. Data 13, 4349–4383 (2021).


    Google Scholar
     

  • Masuda, M., Yatagai, A., Kamiguchi, Okay. & Tanaka, Okay. Daily adjustment for wind-induced precipitation undercatch of day by day gridded precipitation in Japan. Earth Space Sci. 6, 1469–1479 (2019).


    Google Scholar
     

  • Pritchard, H. D., Farinotti, D. & Colwell, S. Measuring modifications in snowpack SWE repeatedly on a panorama scale utilizing lake water stress. J. Hydrometeorol. 22, 795–811 (2021).


    Google Scholar
     

  • Landmann, J. M. et al. Assimilating near-real-time mass stability stake readings right into a mannequin ensemble utilizing a particle filter. Cryosphere 15, 5017–5040 (2021).


    Google Scholar
     

  • Hall, D. Okay., Riggs, G. A. & Salomonson, V. V. Development of strategies for mapping world snow cowl utilizing average decision imaging spectroradiometer information. Remote Sens. Environ. 54, 127–140 (1995).


    Google Scholar
     

  • Ragettli, S. et al. Unraveling the hydrology of a Himalayan catchment by way of integration of excessive decision in situ information and distant sensing with a sophisticated simulation mannequin. Adv. Water Resour. 78, 94–111 (2015).


    Google Scholar
     

  • Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G. & Hagolle, O. Theia snow assortment: high-resolution operational snow cowl maps from Sentinel-2 and Landsat-8 information. Earth Syst. Sci. Data 11, 493–514 (2019).


    Google Scholar
     

  • Liang, S. Narrowband to broadband conversions of land floor Albedo I: Algorithms. Remote Sens. Environ. 76, 213–238 (2001).


    Google Scholar
     

  • Naegeli, Okay., Huss, M. & Hoelzle, M. Change detection of bare-ice albedo within the Swiss Alps. Cryosphere 13, 397–412 (2019).


    Google Scholar
     

  • Marti, R. et al. Mapping snow depth in open alpine terrain from stereo satellite tv for pc imagery. Cryosphere 10, 1361–1380 (2016).


    Google Scholar
     

  • Shean, D. E. et al. An automated, open-source pipeline for mass manufacturing of digital elevation fashions (dems) from very-high-resolution business stereo satellite tv for pc imagery. ISPRS J. Photogramm. Remote Sens. 116, 101–117 (2016).


    Google Scholar
     

  • Nuth, C. & Kääb, A. Co-registration and bias corrections of satellite tv for pc elevation information units for quantifying glacier thickness change. Cryosphere 5, 271–290 (2011).


    Google Scholar
     

  • Beraud, L. et al. Glacier-wide seasonal and annual geodetic mass balances from Pléiades stereo photographs: utility to the Glacier D’argentiére, French Alps. J. Glaciol. 69, 525–537 (2022).


    Google Scholar
     

  • xDEM contributors. xDEM (v0.0.18). Zenodo. (2023).

  • Paschalis, A., De Kauwe, M. G., Sabot, M. & Fatichi, S. When do plant hydraulics matter in terrestrial biosphere modelling? Glob. Change Biol. 30, e17022 (2024).


    Google Scholar
     

  • Fugger, S. et al. Understanding monsoon controls on the power and mass stability of glaciers within the Central and Eastern Himalaya. Cryosphere 16, 1631–1652 (2022).


    Google Scholar
     

  • Ding, B. et al. The dependence of precipitation sorts on floor elevation and meteorological situations and its parameterization. J. Hydrol. 513, 154–163 (2014).


    Google Scholar
     

  • Bernhardt, M. & Schulz, Okay. Snowslide: a easy routine for calculating gravitational snow transport. Geophys. Res. Lett. 37, L11502 (2010).

  • Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    CAS 

    Google Scholar
     

  • Tadono, T. et al. Precise world DEM era by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II-4, 71–76 (2014).


    Google Scholar
     

  • Machguth, H., Paul, F., Kotlarski, S. & Hoelzle, M. Calculating distributed glacier mass stability for the Swiss Alps from regional local weather mannequin output: A methodical description and interpretation of the outcomes. J. Geophys. Res. Atmos. 114, 19106 (2009).


    Google Scholar
     

  • Burlando, M., Carassale, L., Georgieva, E., Ratto, C. F. & Solari, G. A easy and environment friendly process for the numerical simulation of wind fields in complicated terrain. Bound. Layer. Meteorol. 125, 417–439 (2007).


    Google Scholar
     

  • Peleg, N., Fatichi, S., Paschalis, A., Molnar, P. & Burlando, P. An superior stochastic climate generator for simulating 2-d high-resolution local weather variables. J. Adv. Model. Earth Syst. 9, 1595–1627 (2017).


    Google Scholar
     

  • Marty, C., Philipona, R., Fr, C. & Ohmura, A. Altitude dependence of floor radiation fluxes and cloud forcing within the alps: outcomes from the alpine floor radiation finances community. Theor. Appl. Climatol. 72, 137–155 (2002).

  • RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6.0. Boulder, (Colorado USA. NSIDC: National Snow and Ice Data Center, 2017). https://doi.org/10.7265/4m1f-gd7.

  • Scherler, D., Wulf, H. & Gorelick, N. Global evaluation of supraglacial debris-cover extents. Geophys. Res. Lett. 45, 11,798–11,805 (2018).

  • Kneib, M. et al. Controls on ice cliff distribution and traits on debris-covered glaciers. Geophys. Res. Lett. 50, e2022GL102444 (2023).


    Google Scholar
     

  • Sterckx, S. et al. The PROBA-V mission: picture processing and calibration. Int. J. Remote Sens. 35, 2565–2588 (2014).


    Google Scholar
     

  • Poggio, L. et al. SoilGrids 2.0: producing soil info for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).

    CAS 

    Google Scholar
     

  • Kneib, M. et al. Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite tv for pc imagery. Cryosphere 18, 2809–2830 (2024).


    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s43247-025-02611-8
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *