Constraining Earth’s core composition from inside core nucleation

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41467-025-62841-4
and if you wish to take away this text from our website please contact us


  • Nimmo, F. Thermal and compositional evolution of the core. Treatise Geophys. 9, 201–219 (2015).


    Google Scholar
     

  • Davies, C. Cooling historical past of Earth’s core with excessive thermal conductivity. Phys. Earth Planet. Inter. 247, 65–79 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Labrosse, S. Thermal evolution of the core with a excessive thermal conductivity. Phys. Earth Planet. Inter. 247, 36–55 (2015).

    ADS 

    Google Scholar
     

  • Tarduno, J. A. et al. Geodynamo, photo voltaic wind, and magnetopause 3.4 to three.45 billion years in the past. Science 327, 1238–1240 (2010).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu, R. R. et al. Paleomagnetism of three.5-4.0 Ga zircons from the Barberton Greenstone Belt, South Africa. Earth Planet. Sci. Lett. 567, 116999 (2021).

    CAS 

    Google Scholar
     

  • Bono, R. Okay. et al. The pint database: a definitive compilation of absolute palaeomagnetic depth determinations since 4 billion years in the past. Geophys. J. Int. 229, 522–545 (2022).

    ADS 

    Google Scholar
     

  • Buffett, B. A., Huppert, H. E., Lister, J. R. & Woods, A. W. On the thermal evolution of the Earth’s core. J. Geophys. Res. Solid Earth 101, 7989–8006 (1996).


    Google Scholar
     

  • Gubbins, D., Alfè, D., Masters, G., Price, G. D. & Gillan, M. Gross thermodynamics of two-component core convection. Geophys. J. Int. 157, 1407–1414 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Braginsky, S. Structure of the F layer and causes for convection within the Earth’s core. Soviet Phys. Dokl. 149, 8–10 (1963).

  • Buffett, B. A. & Seagle, C.T. Stratification of the highest of the core because of chemical interactions with the mantle. J. Geophys. Res. Solid Earth 115 (2010).

  • Brodholt, J. & Badro, J. Composition of the low seismic velocity e({prime}) layer on the prime of Earth’s core. Geophys. Res. Lett. 44, 8303–8310 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Davies, C. J., Pozzo, M., Gubbins, D. & Alfè, D. Transfer of oxygen to Earth’s core from a long-lived magma ocean. Earth Planet. Sci. Lett. 538, 116208 (2020).

    CAS 

    Google Scholar
     

  • Lay, T. & Young, C. J. The stably-stratified outermost core revisited. Geophys. Res. Lett. 17, 2001–2004 (1990).

    ADS 

    Google Scholar
     

  • Helffrich, G. & Kaneshima, S. Outer-core compositional stratification from noticed core wave pace profiles. Nature 468, 807–810 (2010).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Kaneshima, S. Array analyses of SMKS waves and the stratification of Earth’s outermost core. Phys. Earth Planet. Inter. 276, 234–246 (2018).

    ADS 

    Google Scholar
     

  • Hirose, Okay., Wood, B. & Vočadlo, L. Light components within the Earth’s core. Nat. Rev. Earth Environ. 2, 645–658 (2021).

    CAS 

    Google Scholar
     

  • McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Birch, F. Density and composition of mantle and core. J. Geophys. Res. 69, 4377–4388 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • McDonough, W. 3.16–compositional mannequin for the Earth’s core. in Treatise on Geochemistry 559–577 (Elsevier, 2014).

  • Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H. & Kurosawa, Okay. Planetary and meteoritic mg/si and δ30si variations inherited from photo voltaic nebula chemistry. Earth Planet. Sci. Lett. 427, 236–248 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Fischer, R. A. et al. High strain metallic–silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta 167, 177–194 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed photo voltaic system our bodies and accretion of water. Icarus 248, 89–108 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Terrestrial accretion underneath oxidizing circumstances. Science 339, 1194–1197 (2013).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Fischer, R. A., Campbell, A. J. & Ciesla, F. J. Sensitivities of Earth’s core and mantle compositions to accretion and differentiation processes. Earth Planet. Sci. Lett. 458, 252–262 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth mannequin. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    ADS 

    Google Scholar
     

  • Badro, J., Côté, A. S. & Brodholt, J. P. A seismologically constant compositional mannequin of Earth’s core. Proc. Natl. Acad. Sci. USA 111, 7542–7545 (2014).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nimmo, F. Energetics of the core. in Treatise on Geophysics 2nd edn, Vol. 8 (ed. Schubert, G.) 27–55 (Elsevier, 2015).

  • Christian, J. W. The Theory of Transformations in Metals and Alloys (Newnes, 2002).

  • Huguet, L., Van Orman, J. A., Hauck II, S. A. & Willard, M. A. Earth’s inside core nucleation paradox. Earth Planet. Sci. Lett. 487, 9–20 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Davies, C., Pozzo, M. & Alfè, D. Assessing the inside core nucleation paradox with atomic-scale simulations. Earth Planet. Sci. Lett. 507, 1–9 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Wilson, A. J., Walker, A. M., Alfè, D. & Davies, C. J. Probing the nucleation of iron in Earth’s core utilizing molecular dynamics simulations of supercooled liquids. Phys. Rev. B 103, 214113 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Sun, Y., Zhang, F., Mendelev, M. I., Wentzcovitch, R. M. & Ho, Okay.-M. Two-step nucleation of the Earth’s inside core. Proc. Natl. Acad. Sci. USA 119, 2113059119 (2022).


    Google Scholar
     

  • Wilson, A. J., Alfè, D., Walker, A. M. & Davies, C. J. Can homogeneous nucleation resolve the inside core nucleation paradox? Earth Planet. Sci. Lett. 614, 118176 (2023).

    CAS 

    Google Scholar
     

  • Sun, Y. et al. Unveiling the impact of Ni on the formation and construction of Earth’s inside core. Proc. Natl. Acad. Sci. USA 121, 2316477121 (2024).


    Google Scholar
     

  • Wilson, A. et al. The formation and evolution of Earth’s inside core. Nat. Rev. Earth Environ. 6, 140–154 (2025).

  • Alfè, D., Gillan, M. & Price, G. Complementary approaches to the ab initio calculation of melting properties. J. Chem. Phys. 116, 6170–6177 (2002).

    ADS 

    Google Scholar
     

  • Wood, B. J. Carbon within the core. Earth Planet. Sci. Lett. 117, 593–607 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Davies, C., Pozzo, M., Gubbins, D. & Alfè, D. Constraints from materials properties on the dynamics and evolution of Earth’s core. Nat. Geosci. 8, 678–685 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Umemoto, Okay. & Hirose, Okay. Chemical compositions of the outer core examined by first rules calculations. Earth Planet. Sci. Lett. 531, 116009 (2020).

    CAS 

    Google Scholar
     

  • Ichikawa, H., Tsuchiya, T. & Tange, Y. The p-v-t equation of state and thermodynamic properties of liquid iron. J. Geophys. Res. Solid Earth 119, 240–252 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth throughout its historical past. Earth Planet. Sci. Lett. 304, 251–259 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Nomura, R. et al. Low core-mantle boundary temperature inferred from the solidus of pyrolite. Science 343, 522–525 (2014).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wahl, S. M. & Militzer, B. High-temperature miscibility of iron and rock throughout terrestrial planet formation. Earth Planet. Sci. Lett. 410, 25–33 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Takafuji, N., Hirose, Okay., Mitome, M. & Bando, Y. Solubilities of O and Si in liquid iron in equilibrium with (Mg, Fe) SiO3 perovskite and the sunshine components within the core. Geophys. Res. Lett. 32 (2005).

  • Alfè, D., Gillan, M. & Price, G. D. Composition and temperature of the Earth’s core constrained by combining ab initio calculations and seismic knowledge. Earth Planet. Sci. Lett. 195, 91–98 (2002).

    ADS 

    Google Scholar
     

  • Hirose, Okay., Labrosse, S. & Hernlund, J. Composition and state of the core. Annu. Rev. Earth Planet. Sci. 41, 657–691 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Li, Y., Vočadlo, L., Alfè, D. & Brodholt, J. Carbon partitioning between the Earth’s inside and outer core. J. Geophys. Res. Solid Earth 124, 12812–12824 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Masters, G. & Gubbins, D. On the decision of density inside the Earth. Phys. Earth Planet. Inter. 140, 159–167 (2003).

    ADS 

    Google Scholar
     

  • Yuan, L. & Steinle-Neumann, G. Hydrogen distribution between the Earth’s inside and outer core. Earth Planet. Sci. Lett. 609, 118084 (2023).

    CAS 

    Google Scholar
     

  • Fischer, R. A., Cottrell, E., Hauri, E., Lee, Okay. Okay. & Le Voyer, M. The carbon content material of Earth and its core. Proc. Natl. Acad. Sci. USA 117, 8743–8749 (2020).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Blanchard, I. et al. The metallic–silicate partitioning of carbon throughout Earth’s accretion and its distribution within the early photo voltaic system. Earth Planet. Sci. Lett. 580, 117374 (2022).

    CAS 

    Google Scholar
     

  • Côté, A. S., Vočadlo, L. & Brodholt, J. P. The impact of silicon impurities on the section diagram of iron and doable implications for the Earth’s core construction. J. Phys. Chem. Solids 69, 2177–2181 (2008).

    ADS 

    Google Scholar
     

  • Badro, J., Brodholt, J. P., Piet, H., Siebert, J. & Ryerson, F. J. Core formation and core composition from coupled geochemical and geophysical constraints. Proc. Natl. Acad. Sci. USA 112, 12310–12314 (2015).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lasbleis, M., Kervazo, M. & Choblet, G. The destiny of liquids trapped throughout the Earth’s inside core progress. Geophys. Res. Lett. 47, 2019–085654 (2020).


    Google Scholar
     

  • Pang, G. et al. Enhanced inside core fine-scale heterogeneity in the direction of Earth’s centre. Nature 620, 570–575 (2023).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Driscoll, P. & Davies, C. The “new core paradox:” challenges and potential options. J. Geophys. Res. Solid Earth 128, e2022JB025355 (2023).

  • Biggin, A. J. et al. Palaeomagnetic area depth variations recommend mesoproterozoic inner-core nucleation. Nature 526, 245–248 (2015).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Bono, R. Okay., Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inside core inferred from ediacaran ultra-low geomagnetic area depth. Nat. Geosci. 12, 143–147 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Badro, J. et al. Magnesium partitioning between Earth’s mantle and core and its potential to drive an early exsolution geodynamo. Geophys. Res. Lett. 45, 13–240 (2018).


    Google Scholar
     

  • Hirose, Okay. et al. Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature 543, 99–102 (2017).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wilson, A. J. et al. Powering Earth’s historical dynamo with silicon precipitation. Geophys. Res. Lett. 49, 2022–100692 (2022).


    Google Scholar
     

  • Wilson, A. J., Pozzo, M., Davies, C. J., Walker, A. M. & Alfè, D. Examining the ability provided to Earth’s dynamo by magnesium precipitation and radiogenic warmth manufacturing. Phys. Earth Planet. Inter. 343, 107073 (2023).

    CAS 

    Google Scholar
     

  • Mittal, T. et al. Precipitation of a number of mild components to energy Earth’s early dynamo. Earth Planet. Sci. Lett. 532, 116030 (2020).

    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. b 59, 1758 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: purposes of the generalized gradient approximation for alternate and correlation. Phys. Rev. B 46, 6671 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • He, Y. et al. Superionic iron alloys and their seismic velocities in Earth’s inside core. Nature 602, 258–262 (2022).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Rein ten Wolde, P., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the speed of crystal nucleation in a Lennard-Jones system at average undercooling. J. Chem. Phys. 104, 9932–9947 (1996).

    ADS 

    Google Scholar
     

  • Walker, A., Davies, C., Wilson, A. & Bergman, M. A non-equilibrium slurry mannequin for planetary cores with utility to Earth’s F-layer. Proc. R. Soc. A 481, 20240505 (2025).


    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41467-025-62841-4
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *