This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s43588-025-00866-x
and if you wish to take away this text from our website please contact us
LeCun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageWeb classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).
Silver, D. et al. Mastering the sport of Go with out human information. Nature 550, 354–359 (2017).
Guo, C. et al. Action2motion: Conditioned era of 3d human motions. In Proc. of the twenty eighth ACM International Conference on Multimedia, 2021–2029 (Association for Computing Machinery, 2020).
Bubeck, S. et al. Sparks of synthetic normal intelligence: early experiments with GPT-4. Preprint at (2023).
Fei, N. et al. Towards synthetic normal intelligence by way of a multimodal basis mannequin. Nat. Commun. 13, 3094 (2022).
Moore, G. E. Cramming extra elements onto built-in circuits. Proc. IEEE 86, 82–85 (1998).
Zhang, C. et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks. In Proc. 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 161–170 (2015).
Merolla, P. A. et al. One million spiking-neuron built-in circuit with a scalable communication community and interface. Science 345, 668–673 (2014).
Horowitz, M. 1.1 computing’s power drawback (and what we will do about it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (Association for Computing Machinery, 2014).
Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).
Chen, Z. et al. Deep studying with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).
Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).
Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural community for picture classification. Nature 606, 501–506 (2022).
Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).
Lin, X. et al. All-optical machine studying utilizing diffractive deep neural networks. Science 361, 1004–1008 (2018).
Miscuglio, M. et al. Massively parallel amplitude-only Fourier neural community. Optica 7, 1812–1819 (2020).
Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon 15, 367–373 (2021).
Tait, A. N. et al. Neuromorphic photonic networks utilizing silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).
Shastri, B. J. et al. Photonics for synthetic intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).
Wetzstein, G. et al. Inference in synthetic intelligence with deep optics and photonics. Nature 588, 39–47 (2020).
Xu, S., Wang, J., Yi, S. & Zou, W. High-order tensor move processing utilizing built-in photonic circuits. Nat. Commun. 13, 7970 (2022).
Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).
Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).
Larger, L. et al. High-speed photonic reservoir computing utilizing a time-delay-based structure: million phrases per second classification. Phys. Rev. 7, 011015 (2017).
Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic info processing at gigabyte per second information charges utilizing transient states. Nat. Commun. 4, 1364 (2013).
Vandoorne, Ok. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).
Huang, C. et al. A silicon photonic–digital neural community for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).
Yan, T. et al. Nanowatt all-optical 3D notion for cell robotics. Sci. Adv. 10, eadn2031 (2024).
Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).
Zuo, Y. et al. All-optical neural community with nonlinear activation features. Optica 6, 1132–1137 (2019).
Yan, T. et al. Fourier-space diffractive deep neural community. Phys. Rev. Lett. 123, 023901 (2019).
Xia, F. et al. Nonlinear optical encoding enabled by recurrent linear scattering. Nat. Photon. 18, 1067–1075 (2024).
Wanjura, C. C. & Marquardt, F. Fully nonlinear neuromorphic computing with linear wave scattering. Nat. Phys. 20, 1434–1440 (2024).
Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019).
Jha, A., Huang, C. & Prucnal, P. R. Reconfigurable all-optical nonlinear activation features for neuromorphic photonics. Opt. Lett. 45, 4819–4822 (2020).
Yu, W., Zheng, S., Zhao, Z., Wang, B. & Zhang, W. Reconfigurable low-threshold all-optical nonlinear activation features based mostly on an add-drop silicon microring resonator. IEEE Photonics J. 14, 1–7 (2022).
Bai, B. et al. Microcomb-based built-in photonic processing unit. Nat. Commun. 14, 66 (2023).
Heebner, J. E., Wong, V., Schweinsberg, A., Boyd, R. W. & Jackson, D. J. Optical transmission traits of fiber ring resonators. IEEE J. Quantum Electron. 40, 726–730 (2004).
Chen, S., Zhang, L., Fei, Y. & Cao, T. Bistability and self-pulsation phenomena in silicon microring resonators based mostly on nonlinear optical results. Opt. Express 20, 7454–7468 (2012).
LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based studying utilized to doc recognition. Proc. IEEE 86, 2278–2324 (1998).
Zhu, W. et al. Human movement era: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 46, 2430–2449 (2023).
Bandyopadhyay, S. et al. Single-chip photonic deep neural community with forward-only coaching. Nat. Photon. 18, 1335–1343 (2024).
Hua, S. et al. An built-in large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).
Ahmed, S. R. et al. Universal photonic synthetic intelligence acceleration. Nature 640, 368–374 (2025).
Wang, X. et al. The group interplay subject for studying and explaining pedestrian anticipation. Engineering 34, 70–82 (2024).
Koch, C. & Segev, I. The position of single neurons in info processing. Nat. Neurosci. 3, 1171–1177 (2000).
Bliss, T. V. & Collingridge, G. L. A synaptic mannequin of reminiscence: long-term potentiation within the hippocampus. Nature 361, 31–39 (1993).
Kholodenko, B. N. Cell-signalling dynamics in time and house. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).
Hamerly, R., Bandyopadhyay, S. & Englund, D. Accurate self-configuration of rectangular multiport interferometers. Phys. Rev. Appl. 18, 024019 (2022).
Pai, S. et al. Experimentally realized in situ backpropagation for deep studying in photonic neural networks. Science 380, 398–404 (2023).
Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for common multiport interferometers. Optica 3, 1460–1465 (2016).
Wright, L. G. et al. Deep bodily neural networks skilled with backpropagation. Nature 601, 549–555 (2022).
Xue, Z. et al. Fully ahead mode coaching for optical neural networks. Nature 632, 280–286 (2024).
Trabelsi, C. et al. Deep complicated networks. Preprint at (2017).
Zhang, H. et al. An optical neural chip for implementing complex-valued neural community. Nat. Commun. 12, 457 (2021).
Xiao, H., Rasul, Ok. & Vollgraf, R. Fashion-MNIST: a novel picture dataset for benchmarking machine studying algorithms. Preprint at (2017).
Orchard, G., Jayawant, A., Cohen, G. Ok. & Thakor, N. Converting static picture datasets to spiking neuromorphic datasets utilizing saccades. Front. Neurosci. 9, 437 (2015).
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by quick computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter, S. Gans skilled by a two time-scale replace rule converge to a neighborhood nash equilibrium. Adv. Neural Inf. Process. Syst. 30, 6627–6638 (2017).
Bińkowski, M., Sutherland, D. J., Arbel, M. & Gretton, A. Demystifying MMD GANs. Preprint at (2018).
Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W synthetic normal intelligence. Science 384, 202–209 (2024).
Zhao, P. et al. Ultra-broadband optical amplification utilizing nonlinear built-in waveguides. Nature 640, 918–923 (2025).
Dong, B. et al. Higher-dimensional processing utilizing a photonic tensor core with continuous-time information. Nat. Photon. 17, 1080–1088 (2023).
Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).
Yan, T. Code for a whole photonic built-in neuron (PIN). Zenodo (2025).
This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s43588-025-00866-x
and if you wish to take away this text from our website please contact us
