A whole photonic built-in neuron for nonlinear all-optical computing

This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s43588-025-00866-x
and if you wish to take away this text from our website please contact us


  • LeCun, Y., Bengio, Y. & Hinton, G. Deep studying. Nature 521, 436–444 (2015).

    Article 

    Google Scholar
     

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageWeb classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).

    Article 

    Google Scholar
     

  • Silver, D. et al. Mastering the sport of Go with out human information. Nature 550, 354–359 (2017).

    Article 

    Google Scholar
     

  • Guo, C. et al. Action2motion: Conditioned era of 3d human motions. In Proc. of the twenty eighth ACM International Conference on Multimedia, 2021–2029 (Association for Computing Machinery, 2020).

  • Bubeck, S. et al. Sparks of synthetic normal intelligence: early experiments with GPT-4. Preprint at (2023).

  • Fei, N. et al. Towards synthetic normal intelligence by way of a multimodal basis mannequin. Nat. Commun. 13, 3094 (2022).

    Article 

    Google Scholar
     

  • Moore, G. E. Cramming extra elements onto built-in circuits. Proc. IEEE 86, 82–85 (1998).

    Article 

    Google Scholar
     

  • Zhang, C. et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks. In Proc. 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 161–170 (2015).

  • Merolla, P. A. et al. One million spiking-neuron built-in circuit with a scalable communication community and interface. Science 345, 668–673 (2014).

    Article 

    Google Scholar
     

  • Horowitz, M. 1.1 computing’s power drawback (and what we will do about it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (Association for Computing Machinery, 2014).

  • Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Deep studying with coherent VCSEL neural networks. Nat. Photon. 17, 723–730 (2023).

    Article 

    Google Scholar
     

  • Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article 

    Google Scholar
     

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 

    Google Scholar
     

  • Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural community for picture classification. Nature 606, 501–506 (2022).

    Article 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing utilizing an built-in photonic tensor core. Nature 589, 52–58 (2021).

    Article 

    Google Scholar
     

  • Lin, X. et al. All-optical machine studying utilizing diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Miscuglio, M. et al. Massively parallel amplitude-only Fourier neural community. Optica 7, 1812–1819 (2020).

    Article 

    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon 15, 367–373 (2021).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Neuromorphic photonic networks utilizing silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    Article 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for synthetic intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article 

    Google Scholar
     

  • Wetzstein, G. et al. Inference in synthetic intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article 

    Google Scholar
     

  • Xu, S., Wang, J., Yi, S. & Zou, W. High-order tensor move processing utilizing built-in photonic circuits. Nat. Commun. 13, 7970 (2022).

    Article 

    Google Scholar
     

  • Wang, T. et al. Image sensing with multilayer nonlinear optical neural networks. Nat. Photon. 17, 408–415 (2023).

  • Shen, Y. et al. Deep studying with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article 

    Google Scholar
     

  • Larger, L. et al. High-speed photonic reservoir computing utilizing a time-delay-based structure: million phrases per second classification. Phys. Rev. 7, 011015 (2017).

    Article 

    Google Scholar
     

  • Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic info processing at gigabyte per second information charges utilizing transient states. Nat. Commun. 4, 1364 (2013).

    Article 

    Google Scholar
     

  • Vandoorne, Ok. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

    Article 

    Google Scholar
     

  • Huang, C. et al. A silicon photonic–digital neural community for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).

    Article 

    Google Scholar
     

  • Yan, T. et al. Nanowatt all-optical 3D notion for cell robotics. Sci. Adv. 10, eadn2031 (2024).

    Article 

    Google Scholar
     

  • Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).

    Article 

    Google Scholar
     

  • Zuo, Y. et al. All-optical neural community with nonlinear activation features. Optica 6, 1132–1137 (2019).

    Article 

    Google Scholar
     

  • Yan, T. et al. Fourier-space diffractive deep neural community. Phys. Rev. Lett. 123, 023901 (2019).

    Article 

    Google Scholar
     

  • Xia, F. et al. Nonlinear optical encoding enabled by recurrent linear scattering. Nat. Photon. 18, 1067–1075 (2024).

    Article 

    Google Scholar
     

  • Wanjura, C. C. & Marquardt, F. Fully nonlinear neuromorphic computing with linear wave scattering. Nat. Phys. 20, 1434–1440 (2024).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019).

    Article 

    Google Scholar
     

  • Jha, A., Huang, C. & Prucnal, P. R. Reconfigurable all-optical nonlinear activation features for neuromorphic photonics. Opt. Lett. 45, 4819–4822 (2020).

    Article 

    Google Scholar
     

  • Yu, W., Zheng, S., Zhao, Z., Wang, B. & Zhang, W. Reconfigurable low-threshold all-optical nonlinear activation features based mostly on an add-drop silicon microring resonator. IEEE Photonics J. 14, 1–7 (2022).


    Google Scholar
     

  • Bai, B. et al. Microcomb-based built-in photonic processing unit. Nat. Commun. 14, 66 (2023).

    Article 

    Google Scholar
     

  • Heebner, J. E., Wong, V., Schweinsberg, A., Boyd, R. W. & Jackson, D. J. Optical transmission traits of fiber ring resonators. IEEE J. Quantum Electron. 40, 726–730 (2004).

    Article 

    Google Scholar
     

  • Chen, S., Zhang, L., Fei, Y. & Cao, T. Bistability and self-pulsation phenomena in silicon microring resonators based mostly on nonlinear optical results. Opt. Express 20, 7454–7468 (2012).

    Article 

    Google Scholar
     

  • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based studying utilized to doc recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 

    Google Scholar
     

  • Zhu, W. et al. Human movement era: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 46, 2430–2449 (2023).

    Article 

    Google Scholar
     

  • Bandyopadhyay, S. et al. Single-chip photonic deep neural community with forward-only coaching. Nat. Photon. 18, 1335–1343 (2024).

    Article 

    Google Scholar
     

  • Hua, S. et al. An built-in large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

    Article 

    Google Scholar
     

  • Ahmed, S. R. et al. Universal photonic synthetic intelligence acceleration. Nature 640, 368–374 (2025).

    Article 

    Google Scholar
     

  • Wang, X. et al. The group interplay subject for studying and explaining pedestrian anticipation. Engineering 34, 70–82 (2024).

    Article 

    Google Scholar
     

  • Koch, C. & Segev, I. The position of single neurons in info processing. Nat. Neurosci. 3, 1171–1177 (2000).

    Article 

    Google Scholar
     

  • Bliss, T. V. & Collingridge, G. L. A synaptic mannequin of reminiscence: long-term potentiation within the hippocampus. Nature 361, 31–39 (1993).

    Article 

    Google Scholar
     

  • Kholodenko, B. N. Cell-signalling dynamics in time and house. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article 

    Google Scholar
     

  • Hamerly, R., Bandyopadhyay, S. & Englund, D. Accurate self-configuration of rectangular multiport interferometers. Phys. Rev. Appl. 18, 024019 (2022).

    Article 

    Google Scholar
     

  • Pai, S. et al. Experimentally realized in situ backpropagation for deep studying in photonic neural networks. Science 380, 398–404 (2023).

    Article 

    Google Scholar
     

  • Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for common multiport interferometers. Optica 3, 1460–1465 (2016).

    Article 

    Google Scholar
     

  • Wright, L. G. et al. Deep bodily neural networks skilled with backpropagation. Nature 601, 549–555 (2022).

    Article 

    Google Scholar
     

  • Xue, Z. et al. Fully ahead mode coaching for optical neural networks. Nature 632, 280–286 (2024).

    Article 

    Google Scholar
     

  • Trabelsi, C. et al. Deep complicated networks. Preprint at (2017).

  • Zhang, H. et al. An optical neural chip for implementing complex-valued neural community. Nat. Commun. 12, 457 (2021).

    Article 

    Google Scholar
     

  • Xiao, H., Rasul, Ok. & Vollgraf, R. Fashion-MNIST: a novel picture dataset for benchmarking machine studying algorithms. Preprint at (2017).

  • Orchard, G., Jayawant, A., Cohen, G. Ok. & Thakor, N. Converting static picture datasets to spiking neuromorphic datasets utilizing saccades. Front. Neurosci. 9, 437 (2015).

    Article 

    Google Scholar
     

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by quick computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article 

    Google Scholar
     

  • Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter, S. Gans skilled by a two time-scale replace rule converge to a neighborhood nash equilibrium. Adv. Neural Inf. Process. Syst. 30, 6627–6638 (2017).


    Google Scholar
     

  • Bińkowski, M., Sutherland, D. J., Arbel, M. & Gretton, A. Demystifying MMD GANs. Preprint at (2018).

  • Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W synthetic normal intelligence. Science 384, 202–209 (2024).

    Article 

    Google Scholar
     

  • Zhao, P. et al. Ultra-broadband optical amplification utilizing nonlinear built-in waveguides. Nature 640, 918–923 (2025).

    Article 

    Google Scholar
     

  • Dong, B. et al. Higher-dimensional processing utilizing a photonic tensor core with continuous-time information. Nat. Photon. 17, 1080–1088 (2023).

    Article 

    Google Scholar
     

  • Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).

    Article 

    Google Scholar
     

  • Yan, T. Code for a whole photonic built-in neuron (PIN). Zenodo (2025).


  • This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s43588-025-00866-x
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *