Atomic-scale imaging of frequency-dependent phonon anisotropy

This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09511-z
and if you wish to take away this text from our web site please contact us


  • Schubert, M. et al. Anisotropy, phonon modes, and free cost provider parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ma, W. L. et al. In-plane anisotropic and ultra-low-loss polaritons in a pure van der Waals crystal. Nature 562, 557–562 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bubnova, R., Volkov, S., Albert, B. & Filatov, S. Borates—crystal buildings of potential nonlinear optical supplies: excessive anisotropy of the thermal enlargement attributable to anharmonic atomic vibrations. Crystals 7, 93 (2017).

    Article 

    Google Scholar
     

  • Lin, I. C. et al. Extraction of anisotropic thermal vibration components for oxygen from the Ti L2,3-edge in SrTiO3. J. Phys. Chem. C 127, 17802–17808 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abramov, Y. A., Tsirelson, V. G., Zavodnik, V. E., Ivanov, S. A. & Brown, I. D. The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction evaluation. Acta Crystallogr. B 51, 942–951 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Gong, Y. et al. Polarized Raman scattering of in-plane anisotropic phonon modes in α-MoO3. Adv. Opt. Mater. 10, 2200038 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jauch, W. & Reehuis, M. Electron-density distribution in cubic SrTiO3: a comparative gamma-ray diffraction research. Acta Crystallogr. A 61, 411–417 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X., Gadre, C. A., Aoki, T. & Pan, X. Probing molecular vibrations by monochromated electron microscopy. Trends Chem. 4, 76–90 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Krivanek, O. L. et al. Vibrational spectroscopy within the electron microscope. Nature 514, 209–212 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy within the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeiger, P. M. & Rusz, J. Simulations of spatially and angle-resolved vibrational electron vitality loss spectroscopy for a system with a planar defect. Phys. Rev. B 104, 094103 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoglund, E. R. et al. Direct visualization of localized vibrations at complicated grain boundaries. Adv. Mater. 35, e2208920 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Haas, B. et al. Atomic-resolution mapping of localized phonon modes at grain boundaries. Nano Lett. 23, 5975–5980 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic decision. Phys. Rev. Lett. 122, 016103 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatraman, Ok., Levin, B. D. A., March, Ok., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic decision with electron affect scattering. Nat. Phys. 15, 1237–1241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sirenko, A. A. et al. Soft-mode hardening in SrTiO3 skinny movies. Nature 404, 373–376 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. Ok. et al. High-kappa perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, W. et al. Real-space charge-density imaging with sub-ångström decision by four-dimensional electron microscopy. Nature 575, 480–484 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Casella, L. & Zaccone, A. Soft mode concept of ferroelectric section transitions within the low-temperature section. J. Phys. Condens. Matter 33, 165401 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burns, G. & Dacol, F. H. Lattice modes in ferroelectric perovskites. III. Soft modes in BaTiO3. Phys. Rev. B 18, 5750–5755 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tian, Z. et al. Preparation of nano BaTiO3‐primarily based ceramics for multilayer ceramic capacitor utility by chemical coating methodology. J. Am. Ceram. Soc. 92, 830–833 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, D. S. et al. Emerging reminiscences: resistive switching mechanisms and present standing. Rep. Prog. Phys. 75, 076502 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ji, D. et al. Freestanding crystalline oxide perovskites right down to the monolayer restrict. Nature 570, 87–90 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Nonvolatile ferroelectric area wall reminiscence built-in on silicon. Nat. Commun. 13, 4332 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, R. et al. Structural section transitions in SrTiO3 from deep potential molecular dynamics. Phys. Rev. B 105, 064104 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van der Marel, D., Barantani, F. & Rischau, C. W. Possible mechanism for superconductivity in doped SrTiO3. Phys. Rev. Res. 1, 013003 (2019).

    Article 

    Google Scholar
     

  • Niedermeier, C. A. et al. Phonon scattering restricted mobility within the consultant cubic perovskite semiconductors SrGeO3, BaSnO3, and SrTiO3. Phys. Rev. B 101, 125206 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, J., Huang, Z., Gao, W., Zhang, G. & Chi, M. Atomic decision cryogenic 4D-STEM imaging through sturdy distortion correction. ACS Nano 17, 11327–11334 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeiger, P. M. & Rusz, J. Efficient and versatile mannequin for vibrational STEM-EELS. Phys. Rev. Lett. 124, 025501 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeiger, P. M. & Rusz, J. Frequency-resolved frozen phonon multislice methodology and its utility to vibrational electron vitality loss spectroscopy utilizing parallel illumination. Phys. Rev. B 104, 104301 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cancellieri, C. et al. Polaronic steel state on the LaAlO3/SrTiO3 interface. Nat. Commun. 7, 10386 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krivanek, O. et al. Damage-free evaluation of organic supplies by vibrational spectroscopy within the EM. Microsc. Microanal. 26, 108–110 (2020).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Signatures of superconductivity close to 80 Ok in a nickelate beneath excessive strain. Nature 621, 493–498 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Phonon modes and electron–phonon coupling on the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, C. T. et al. Domain dynamics throughout ferroelectric switching. Science 334, 968–971 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Spiecker, E. Determination of crystal polarity from bend contours in transmission electron microscope photographs. Ultramicroscopy 92, 111–132 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a brand new software program device for the automated evaluation of atomic decision photographs utilizing two-dimensional Gaussian becoming. Adv. Struct. Chem. Imaging 3, 9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, X. et al. Curvature-induced one-dimensional phonon polaritons at edges of folded boron nitride sheets. Nano Lett. 22, 9319–9326 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Culjak, I., Abram, D., Pribanic, T., Dzapo, H. & Cifrek, M. A quick introduction to OpenCV. In Proc. thirty fifth International Convention MIPRO (ed. Biljanović, P.) 1725–1730 (IEEE, 2012).

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gonze, X. & Lee, C. Dynamical matrices, Born efficient fees, dielectric permittivity tensors, and interatomic drive constants from density-functional perturbation concept. Phys. Rev. B 55, 10355–10368 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS – a versatile simulation device for particle-based supplies modeling on the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Carreras, A. phonoLAMMPS Documentation. GitHub (2023).

  • Carreras, A., Togo, A. & Tanaka, I. DynaPhoPy: a code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation methods in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn 92, 012001 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. DP-GEN: a concurrent studying platform for the technology of dependable deep studying primarily based potential vitality fashions. Comput. Phys. Commun. 253, 107206 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Barthel, J. Dr. Probe: a software program for high-resolution STEM picture simulation. Ultramicroscopy 193, 1–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Momma, Ok. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology knowledge. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Servoin, J. L., Luspin, Y. & Gervais, F. Infrared dispersion in SrTiO3 at excessive temperature. Phys. Rev. B 22, 5501–5506 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stirling, W. G. Neutron inelastic scattering research of the lattice dynamics of strontium titanate: harmonic fashions. J. Phys. C 5, 2711 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, J.-J., Hellman, O. & Bernardi, M. Electron-phonon scattering within the presence of sentimental modes and electron mobility in SrTiO3 perovskite from first ideas. Phys. Rev. Lett. 121, 226603 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scalabrin, A., Chaves, A. S., Shim, D. S. & Porto, S. P. S. Temperature dependence of the A1 and E optical phonons in BaTiO3. Phys. Status Solidi B 79, 731–742 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hermet, P., Veithen, M. & Ghosez, P. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density useful concept. J. Phys. Condens. Matter 21, 215901 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evarestov, R. A. & Bandura, A. V. First-principles calculations on the 4 phases of BaTiO3. J. Comput. Chem. 33, 1123–1130 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ehsan, S., Arrigoni, M., Madsen, G. Ok. H., Blaha, P. & Tröster, A. First-principles self-consistent phonon method to the research of the vibrational properties and structural section transition of BaTiO3. Phys. Rev. B 103, 094108 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09511-z
    and if you wish to take away this text from our web site please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *