This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09452-7
and if you wish to take away this text from our web site please contact us
Schirhagl, R., Chang, Ok., Loretz, M. & Degen, C. L. Nitrogen-vacancy facilities in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).
Casola, F., Sar, T. V. D. & Yacoby, A. Probing condensed matter physics with magnetometry primarily based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 024105–13 (2018).
Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).
Hong, S. et al. Nanoscale magnetometry with NV facilities in diamond. MRS Bull. 38, 155–161 (2013).
Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).
Ofori-Okai, B. Ok. et al. Spin properties of very shallow nitrogen emptiness defects in diamond. Phys. Rev. B 86, 081406 (2012).
Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C. & Chang, H.-C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).
Zhou, H. et al. Quantum metrology with strongly interacting spin programs. Phys. Rev. X 10, 031003 (2020).
Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).
Choi, J. et al. Robust dynamic Hamiltonian engineering of many-body spin programs. Phys. Rev. X 10, 031002 (2020).
Macrì, T., Smerzi, A. & Pezzè, L. Loschmidt echo for quantum metrology. Phys. Rev. A 94, 010102 (2016).
Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg restrict with out single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).
Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and diminished quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992).
Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).
Greve, G. P., Luo, C., Wu, B. & Thompson, J. Ok. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).
Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Nature 621, 728–733 (2023).
Hines, J. A. et al. Spin squeezing by Rydberg dressing in an array of atomic ensembles. Phys. Rev. Lett. 131, 063401 (2023).
Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 621, 734–739 (2023).
Franke, J. et al. Quantum-enhanced sensing on optical transitions via finite-range interactions. Nature 621, 740–745 (2023).
Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. Ok. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).
Xu, Ok. et al. Probing dynamical part transitions with a superconducting quantum simulator. Sci. Adv. 6, 4935–4952 (2020).
Bao, H. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020).
Koppenhöfer, M., Groszkowski, P., Lau, H.-Ok. & Clerk, A. A.Dissipative superradiant spin amplifier for enhanced quantum sensing. PRX Quantum 3, 030330 (2022).
Shields, B. J., Unterreithmeier, Q. P., Leon, N. P.de, Park, H. & Lukin, M. D.Efficient readout of a single spin state in diamond by way of spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).
Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nat. Phys. 18, 925–930 (2022).
Li, Z. et al. Improving metrology with quantum scrambling. Science 380, 1381–1384 (2023).
Ohno, Ok. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).
Hughes, L. B. et al. Two-dimensional spin programs in PECVD-grown diamond with tunable density and lengthy coherence for enhanced quantum sensing and simulation. APL Mater. 11, 021101 (2023).
Hughes, L. B. et al. Strongly interacting, two-dimensional, dipolar spin ensembles in (111)-oriented diamond. Phys. Rev. X 15, 021035 (2025).
Tetienne, J. P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an utility to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).
Doherty, M. W. et al. The nitrogen-vacancy color centre in diamond. Phys. Rep. 528, 1–45 (2013).
Sakurai, J. J. & Napolitano, J. Modern Quantum Mechanics (Cambridge Univ. Press, 2020).
Gullion, T., Baker, D. B. & Conradi, M. S. New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484 (1990).
Miller, C. et al. Two-axis twisting utilizing Floquet-engineered XYZ spin fashions with polar molecules. Nature 633, 332–337 (2024).
Liu, Y. C., Xu, Z. F., Jin, G. R. & You, L. Spin squeezing: remodeling one-axis twisting into two-axis twisting. Phys. Rev. Lett. 107, 013601 (2011).
Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023).
Martin, L. S. et al. Controlling native thermalization dynamics in a Floquet-engineered dipolar ensemble. Phys. Rev. Lett. 130, 210403 (2023).
Schulte, M., Martínez-Lahuerta, V. J., Scharnagl, M. S. & Hammerer, Ok. Ramsey interferometry with generalized one-axis twisting echoes. Quantum 4, 268 (2020).
Braemer, A., Franz, T., Weidemüller, M. & Gärttner, M. Pair localization in dipolar programs with tunable positional dysfunction. Phys. Rev. B 106, 134212 (2022).
Franz, T. et al. Emergent pair localization in a many-body quantum spin system. Preprint at (2022).
Block, M. et al. Scalable spin squeezing from finite-temperature easy-plane magnetism. Nat. Phys. 20, 1575–1581 (2024).
Perlin, M. A., Qu, C. & Rey, A. M. Spin squeezing with short-range spin-exchange interactions. Phys. Rev. Lett. 125, 223401 (2020).
Kwasigroch, M. P. & Cooper, N. R. Synchronization transition in dipole-coupled two-level programs with positional dysfunction. Phys. Rev. A 96, 053610 (2017).
Chen, Y.-C. et al. Laser writing of particular person nitrogen-vacancy defects in diamond with near-unity yield. Optica 6, 662–667 (2019).
Arunkumar, N. et al. Quantum logic enhanced sensing in solid-state spin ensembles. Phys. Rev. Lett. 131, 100801 (2023).
Choi, J. et al. Probing and manipulating embryogenesis by way of nanoscale thermometry and temperature management. Proc. Natl Acad. Sci. USA 117, 14636–14641 (2020).
Zhang, X., Hu, Z. & Liu, Y. C. Fast era of GHZ-like states utilizing collective-spin XYZ mannequin. Phys. Rev. Lett. 132, 113402 (2024).
Bilitewski, T. et al. Dynamical era of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).
Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with lots of of spins. Nature 484, 489–492 (2012).
Wurtz, J., Polkovnikov, A. & Sels, D. Cluster truncated Wigner approximation in strongly interacting programs. Ann. Phys. 395, 341–365 (2018).
Braemer, A., Vahedi, J. & Gärttner, M. Cluster truncated Wigner approximation for bond-disordered Heisenberg spin fashions. Phys. Rev. B 110, 054204 (2024).
Choi, J. et al. Depolarization dynamics in a strongly interacting solid-state spin ensemble. Phys. Rev. Lett. 118, 093601 (2017).
Song, Y. et al. Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond. Photon. Res. 8, 1289–1295 (2020).
Vannimenus, J. & Toulouse, G. Theory of the frustration impact. II. Ising spins on a sq. lattice. J. Phys. C Solid State Phys. 10, L537 (1977).
This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09452-7
and if you wish to take away this text from our web site please contact us
