Unlocking red-to-near-infrared luminescence by way of ion-pair meeting in carbodicarbene borenium ions

This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41557-025-01941-6
and if you wish to take away this text from our web site please contact us


  • Yuan, L., Wang, Y. & Dou, C. Progress of polycyclic boron-doped molecular carbons. Org. Mater. 05, 191–201 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mellerup, S. Okay. & Wang, S. Boron-doped molecules for optoelectronics. Trends Chem. 1, 77–89 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Von Grotthuss, E., John, A., Kaese, T. & Wagner, M. Doping polycyclic aromatics with boron for superior efficiency in supplies science and catalysis. Asian J. Org. Chem. 7, 37–53 (2018).

    Article 

    Google Scholar
     

  • Farrell, J. M. et al. Tunable low-LUMO boron-doped polycyclic fragrant hydrocarbons by normal one-pot C–H borylations. J. Am. Chem. Soc. 141, 9096–9104 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J.-J. et al. Pushing up the dimensions restrict of boron-doped peri-acenes: modular synthesis and characterizations. Angew. Chem. Int. Ed. 62, e202312055 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dou, C., Saito, S., Matsuo, Okay., Hisaki, I. & Yamaguchi, S. A boron-containing PAH as a substructure of boron-doped graphene. Angew. Chem. Int. Ed. 51, 12206–12210 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C., Guo, Y., Chang, Z., Müllen, Okay. & Wang, X.-Y. Synthesis of quadruply boron-doped acenes with stimuli-responsive multicolor emission. Nat. Commun. 15, 8555 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mützel, C., Farrell, J. M., Shoyama, Okay. & Würthner, F. 12b,24b-diborahexabenzo[a,c,fg,l,n,qr]pentacene: a low-LUMO boron-doped polycyclic fragrant hydrocarbon. Angew. Chem. Int. Ed. 61, e202115746 (2022).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Photonic modulation enabled by controlling the sting buildings of boron-doped molecular carbons. Angew. Chem. Int. Ed. 62, e202306911 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, L. et al. A C54B2 polycyclic π-system with bilayer meeting and multi-redox exercise. CCS Chem. 5, 876–884 (2022).

    Article 

    Google Scholar
     

  • Hattori, I. et al. In silico screening and experimental verification of near-infrared-emissive two-boron-doped polycyclic fragrant hydrocarbons. Angew. Chem. Int. Ed. 63, e202403829 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ito, M., Sakai, M., Ando, N. & Yamaguchi, S. Electron-deficient heteroacenes that include two boron atoms: near-infrared fluorescence primarily based on a push–pull impact. Angew. Chem. Int. Ed. 60, 21853–21859 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mützel, C., Shoyama, Okay., Krause, A.-M. & Würthner, F. Synthesis of a helical boron-doped PAH by post-functionalization of three,9-diboraperylene. Organic Chem. Front. 11, 2747–2755 (2024).

    Article 

    Google Scholar
     

  • Dar, A. A. & Malik, A. A. Photoluminescent natural crystals and co-crystals. J. Mater. Chem. C 12, 9888–9913 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yan, D. & Evans, D. G. Molecular crystalline supplies with tunable luminescent properties: from polymorphs to multi-component solids. Mater. Horizons 1, 46–57 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z., Midgley, A. C., Kong, D. & Ding, D. Organic persistent luminescence imaging for biomedical functions. Mater. Today Bio. 17, 100481 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagspiel, S. et al. Modulation of the naked-eye and fluorescence shade of a protonated boron-doped thiazolothiazole by anion-dependent hydrogen bonding. Chem. Eur. J. 28, e202201398 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Škoch, Okay. et al. Preparation, construction, reactivity, lewis acidic and fluorescence properties of arylpyridine primarily based boron C,N-chelates that includes weakly coordinating anions. Chem. Eur. J. 30, e202403263 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Maar, R. R., Katzman, B. D., Boyle, P. D., Staroverov, V. N. & Gilroy, J. B. Cationic boron formazanate dyes. Angew. Chem. Int. Ed. 60, 5152–5156 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Adachi, Y., Arai, F. & Jäkle, F. Extended conjugated borenium dimers by way of late stage functionalization of air-stable borepinium ions. Chem. Commun. 56, 5119–5122 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Katzman, B. D. et al. A strongly Lewis-acidic and fluorescent borenium cation supported by a tridentate formazanate ligand. Chem. Commun. 57, 9530–9533 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Watson, A. E. R., Boyle, P. D., Ragogna, P. J., & Gilroy, J. B. Ligand protonation results in extremely fluorescent boronium cations. Chem. Sci. 16, 2258–2264 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsurumaki, E., Hayashi, S.-y, Tham, F. S., Reed, C. A. & Osuka, A. Planar subporphyrin borenium cations. J. Am. Chem. Soc. 133, 11956–11959 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piers, W. E., Bourke, S. C. & Conroy, Okay. D. Borinium, borenium, and boronium ions: synthesis, reactivity, and functions. Angew. Chem. Int. Ed. 44, 5016–5036 (2005).

    Article 
    CAS 

    Google Scholar
     

  • De Vries, T. S., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: borenium chemistry from the natural perspective. Chem. Rev. 112, 4246–4282 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nesterov, V. et al. NHCs in primary group chemistry. Chem. Rev. 118, 9678–9842 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borthakur, B., Ghosh, B. & Phukan, A. Okay. The flourishing chemistry of carbene stabilized compounds of group 13 and 14 components. Polyhedron 197, 115049 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Visbal, R. & Gimeno, M. C. N-heterocyclic carbene steel complexes: photoluminescence and functions. Chem. Soc. Rev. 43, 3551–3574 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an especially bent acyclic allene (a ‘carbodicarbene’): a robust donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Klein, S., Tonner, R. & Frenking, G. Carbodicarbenes and associated divalent carbon(0) compounds. Chem. Eur. J. 16, 10160–10170 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krischer, F. & Gessner, V. H. Ligand trade at carbon: artificial entry to elusive species and versatile reagents. JACS Au 4, 1709–1722 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Y., Lyu, Y., Tymann, D., Antoni, P. W. & Hansmann, M. M. Cleavage of carbodicarbenes with N2O for accessing steady diazoalkenes: two-fold ligand trade at a C0-atom. Angew. Chem. Int. Ed. 64, e202415228 (2024).

    Article 

    Google Scholar
     

  • Kooij, B., Chen, D. W., Fadaei-Tirani, F. & Severin, Okay. Metal-mediated synthesis of a blended arduengo-fischer carbodicarbene ligand. Angew. Chem. Int. Ed. 63, e202407945 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hsu, Y.-C. et al. Synthesis and isolation of an acyclic tridentate bis(pyridine)carbodicarbene and research on its structural implications and reactivities. Angew. Chem. Int. Ed. 54, 2420–2424 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dolai, R. et al. Carbodicarbenes and placing redox transitions of their conjugate acids: affect of NHC versus CAAC as donor substituents. Chem. Eur. J. 29, e202202888 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, L., Wang, J., Knoblauch, N., Matler, A. & Ye, Q. Conversion of Bestmann ylide into carbophosphinocarbene. Angew. Chem. Int. Ed. 64, e202501955 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Chan, Y.-C. et al. Isolated carbon(I) species that includes a carbone cation radical. Nat. Synth. (2025).

  • Chen, W. C. et al. The elusive three-coordinate dicationic hydrido boron complicated. J. Am. Chem. Soc. 136, 914–917 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, Okay., Kusumoto, S. & Nozaki, Okay. Boron polycation supported by cyclic bis(carbodiphosphorane). Chem. Eur. J. 29, e202302060 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scherpf, T., Feichtner, Okay.-S. & Gessner, V. H. Using ylide functionalization to stabilize boron cations. Angew. Chem. Int. Ed. 56, 3275–3279 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Münzer, J. E. et al. Difluoroborenium cation stabilized by hexaphenyl-carbodiphosphorane: a concise examine on the molecular and digital construction of [(Ph3P)2CBF2][BF4]. Eur. J. Inorg. Chem. 2016, 3852–3858 (2016).

    Article 

    Google Scholar
     

  • Xiang, L., Wang, J., Su, W., Lin, Z. & Ye, Q. Facile entry to halogenated cationic B·C-centered organoborons isoelectronic with alkenyl halides. Dalton Trans. 50, 17491–17494 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, C.-L. et al. Air- and photo-stable luminescent carbodicarbene-azaboraacenium ions. Nat. Chem. 16, 437–445 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hollister, Okay. Okay. et al. Pentacyclic fused diborepinium ions with carbene- and carbone-mediated deep-blue to crimson emission. Chem. Sci. 15, 14358–14370 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollister, Okay. Okay. et al. Air-stable thermoluminescent carbodicarbene-borafluorenium ions. J. Am. Chem. Soc. 144, 590–598 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. & Gilliard, R. J. Jr. Coordination chemistry meets boron helices: cationic double-stranded diborahelicates and bora[7]helicenes with multicolor emission. J. Am. Chem. Soc. 147, 23213–23225 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, Y. C. et al. Synergistic catalysis by bronsted acid/carbodicarbene mimicking pissed off lewis pair-like reactivity. Angew. Chem. Int. Ed. 60, 19949–19956 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, B.-H. et al. Frustrated Lewis pair (FLP) reactivity from carbone–BPh3 Lewis adduct. Chem. Eur. J. 31, e02344 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Englman, R. & Jortner, J. The power hole regulation for radiationless transitions in massive molecules. Mol. Phys. 18, 145–164 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Caspar, J. V. & Meyer, T. J. Application of the power hole regulation to nonradiative, excited-state decay. J. Phys. Chem. 87, 952–957 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Deng, C.-L. et al. Unveiling three interconvertible redox states of boraphenalene. J. Am. Chem. Soc. 146, 6145–6156 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mei, J., Leung, N. L. C., Kwok, R. T. Okay., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: collectively we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, S., Bhandari, M., Rawat, S. & Nembenna, S. in Polar Organometallic Reagents (eds Wheatley, A. E. H. & Uchiyama, M.) 201–269 (2022).

  • Engesser, T. A., Lichtenthaler, M. R., Schleep, M. & Krossing, I. Reactive p-block cations stabilized by weakly coordinating anions. Chem. Soc. Rev. 45, 789–899 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelling, L., Eßer, J., Knyszek, D. & Gessner, V. H. Carbon-based weakly coordinating anions: molecular design, synthesis and functions. Angew. Chem. Int. Ed. 63, e202405936 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q.-Q. et al. Diazapentabenzocorannulenium: a hydrophilic/biophilic cationic buckybowl. Angew. Chem. Int. Ed. 61, e202112638 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, D., Pisula, W., Enkelmann, V., Feng, X. & Müllen, Okay. Controllable columnar group of positively charged polycyclic fragrant hydrocarbons by selection of counterions. J. Am. Chem. Soc. 131, 9620–9621 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. π-Extended doublet open-shell graphene fragments exhibiting one-dimensional chain stacking. J. Am. Chem. Soc. 144, 2095–2100 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murai, M., Hosokawa, N., Roy, D. & Takai, Okay. Bismuth-catalyzed synthesis of polycyclic fragrant hydrocarbons (PAHs) with a phenanthrene spine by way of cyclization and aromatization of 2-(2-arylphenyl)vinyl ethers. Org. Lett. 16, 4134–4137 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. C., Hsu, Y. C., Lee, C. Y., Yap, G. P. A. & Ong, T. G. Synthetic modification of acyclic bent allenes (carbodicarbenes) and additional research on their structural implications and reactivities. Organometallics 32, 2435–2442 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Pranckevicius, C., Liu, L. L., Bertrand, G. & Stephan, D. W. Synthesis of a carbodicyclopropenylidene: a carbodicarbene primarily based solely on carbon. Angew. Chem. Int. Ed. 55, 5536–5540 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dudek, W. M., Ostrowski, S. & Dobrowolski, J. C. On aromaticity of the fragrant α-amino acids and tuning of the NICS indices to search out the aromaticity order. J. Phys. Chem. A 126, 3433–3444 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanger, A. Reexamination of NICSπ,zz: top dependence, off-center values, and integration. J. Phys. Chem. A 123, 3922–3927 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matito, E. An digital aromaticity index for giant rings. Phys. Chem. Chem. Phys. 18, 11839–11846 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casademont-Reig, I. et al. Quest for probably the most fragrant pathway in charged expanded porphyrins. Chem. Eur. J. 29, e202202264 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aihara, J.-i, Nakagami, Y., Sekine, R. & Makino, M. Validity and limitations of the bridged annulene mannequin for porphyrins. J. Phys. Chem. A 116, 11718–11730 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szczepanik, D. W. et al. The electron density of delocalized bonds (EDDB) utilized for quantifying aromaticity. Phys. Chem. Chem. Phys. 19, 28970–28981 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davydov, A. S. in Theory of Molecular Excitons (ed. Davydov, A. S.) 153–243 (Springer, 1971).

  • Egelhaaf, H. J., Gierschner, J., Haiber, J. & Oelkrug, D. Optical constants of extremely oriented oligothiophene movies and nanoparticles. Opt. Mater. 12, 395–401 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Egelhaaf, H. J., Gierschner, J. & Oelkrug, D. Polarizability results and power switch in quinquethiophene doped bithiophene and OPV movies. Synth. Met. 127, 221–227 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Y. et al. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in natural light-emitting diodes. Appl. Phys. Lett. 91, 011111 (2007).

    Article 

    Google Scholar
     

  • Wang, L. et al. Novel extremely emissive H-aggregates with combination fluorescence change in a phenylbenzoxazole-based system. Chem. Commun. 50, 8723–8726 (2014).

    Article 
    CAS 

    Google Scholar
     

  • McLaurin, E. J., Bradshaw, L. R. & Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 25, 1283–1292 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X.-d, Wolfbeis, O. S. & Meier, R. J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M., Wang, R.-Z. & Zhao, C.-H. Temperature-dependent twin fluorescence from small natural molecules. Organic Materials 4, 204–215 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Takahashi, S. et al. Sulfur-bridged cationic diazulenomethenes: formation of charge-segregated meeting with excessive charge-carrier mobility. J. Am. Chem. Soc. 146, 22642–22649 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamasumi, Okay. et al. Charge-segregated stacking construction with anisotropic electrical conductivity in NIR-absorbing and emitting positively charged π-electronic programs. Angew. Chem. Int. Ed. 62, e202216013 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Azumi, T., Armstrong, A. T. & McGlynn, S. P. Energy of excimer luminescence. II. Configuration interplay between molecular exciton states and cost resonance states. J. Chem. Phys. 41, 3839–3852 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Deutsch, M. et al. Geometry relaxation-mediated localization and delocalization of excitons in natural semiconductors: a quantum chemical examine. J. Chem. Phys. 153, 224104 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plasser, F. TheoDORE: a toolbox for an in depth and automatic evaluation of digital excited state computations. J. Chem. Phys. 152, 084108 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibele, L. M., Sánchez-Murcia, P. A., Mai, S., Nogueira, J. J. & González, L. Excimer intermediates en path to long-lived charge-transfer states in single-stranded adenine DNA as revealed by nonadiabatic dynamics. J. Phys. Chem. Lett. 11, 7483–7488 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plasser, F. & Lischka, H. Analysis of excitonic and cost switch interactions from quantum chemical calculations. J. Chem. Theory Comput. 8, 2777–2789 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valeur, B. Effects of intermolecular photophysical processes on fluorescence emission. In Molecular Fluorescence: Principles and Applications 72–124 (Wiley-VCH, 2001).

  • Wei, Y.-C. et al. Overcoming the power hole regulation in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photonics 14, 570–577 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cravcenco, A. et al. Exciton delocalization counteracts the power hole: a brand new pathway towards NIR-emissive dyes. J. Am. Chem. Soc. 143, 19232–19239 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, R. M. & Wasielewski, M. R. Mixed digital states in molecular dimers: connecting singlet fission, excimer formation, and symmetry-breaking cost switch. Acc. Chem. Res. 53, 1957–1968 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osako, T. & Uozumi, Y. Enantioposition-selective copper-catalyzed azide–alkyne cycloaddition for development of chiral biaryl derivatives. Org. Lett. 16, 5866–5869 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. F. et al. Two bipolar blue-emitting fluorescent supplies primarily based on 1,3,5-triazine and peripheral pyrene for natural light-emitting diodes. Dyes Pigm. 145, 43–53 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bruker. Saint, APEX4 (Bruker AXS Inc., 2019)

  • Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal construction willpower. J. Appl. Crystallogr. 48, 3–10 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheldrick, G. M. SHELXT—built-in space-group and crystal-structure willpower. Acta Crystallogr. Sect. A 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. Okay. & Puschmann, H. OLEX2: a whole construction answer, refinement and evaluation program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian Inc., 2016).

  • Grimme, S. Semiempirical hybrid density practical with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, E. R. & Becke, A. D. A post-Hartree–Fock mannequin of intermolecular interactions: inclusion of higher-order corrections. J. Chem. Phys. 124, 024101 (2006).

    Article 

    Google Scholar
     

  • Barone, V. & Cossi, M. Quantum calculation of molecular energies and power gradients in answer by a conductor solvent mannequin. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Neese, F. Software replace: the ORCA program system–model 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).

    Article 

    Google Scholar
     

  • Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock trade. Chem. Phys. 356, 98–109 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 6.0: pure bond orbital evaluation program. J. Comput. Chem. 34, 1429–1437 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitoraj, M. P., Michalak, A. & Ziegler, T. A mixed cost and power decomposition scheme for bond evaluation. J. Chem. Theory Comput. 5, 962–975 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radon, M. On the properties of pure orbitals for chemical valence. Theor. Chem. Acc. 120, 337–339 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J.-X., Sheong, F. Okay. & Lin, Z. Unravelling chemical interactions with principal interacting orbital evaluation. Chem. Eur. J. 24, 9639–9650 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen, F. Segmented contracted foundation units optimized for nuclear magnetic shielding. J. Chem. Theory Comput. 11, 132–138 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. py.Aroma 3: An intuitive graphical person interface for numerous aromaticity analyses. Chemistry 6, 1692–1703 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Herges, R. & Geuenich, D. Delocalization of electrons in molecules. J. Phys. Chem. A 105, 3214–3220 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Caricato, M. et al. Formation and leisure of excited states in answer: a brand new time dependent polarizable continuum mannequin primarily based on time dependent density practical concept. J. Chem. Phys. 124, 124520 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Y.-S., Li, G.-D., Mao, S.-P. & Chai, J.-D. Long-range corrected hybrid density functionals with improved dispersion corrections. J. Chem. Theory Comput. 9, 263–272 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madjet, M. E., Abdurahman, A. & Renger, T. Intermolecular coulomb couplings from ab initio electrostatic potentials: utility to optical transitions of strongly coupled pigments in photosynthetic antennae and response facilities. J. Phys. Chem. B 110, 17268–17281 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article 

    Google Scholar
     

  • Yanai, T., Tew, D. P. & Handy, N. C. A brand new hybrid trade–correlation practical utilizing the Coulomb-attenuating technique (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Fedorov, D. G. & Kitaura, Okay. Pair interplay power decomposition evaluation. J. Comput. Chem. 28, 222–237 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barca, G. M. J. et al. Recent developments within the normal atomic and molecular digital construction system. J. Chem. Phys. 152, 154102 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papajak, E., Zheng, J. J., Xu, X. F., Leverentz, H. R. & Truhlar, D. G. Perspectives on foundation units stunning: seasonal plantings of diffuse foundation features. J. Chem. Theory Comput. 7, 3027–3034 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. J., Xu, X. F. & Truhlar, D. G. Minimally augmented Karlsruhe foundation units. Theor. Chem. Acc. 128, 295–305 (2011).

    Article 
    CAS 

    Google Scholar
     

  • 末永, 正. PC GAMESSため新しい計算化学統合環境Facio開発. J. Comput. Chem. Japan (2005).


  • This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41557-025-01941-6
    and if you wish to take away this text from our web site please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *