This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41557-025-01941-6
and if you wish to take away this text from our web site please contact us
Yuan, L., Wang, Y. & Dou, C. Progress of polycyclic boron-doped molecular carbons. Org. Mater. 05, 191–201 (2023).
Mellerup, S. Okay. & Wang, S. Boron-doped molecules for optoelectronics. Trends Chem. 1, 77–89 (2019).
Von Grotthuss, E., John, A., Kaese, T. & Wagner, M. Doping polycyclic aromatics with boron for superior efficiency in supplies science and catalysis. Asian J. Org. Chem. 7, 37–53 (2018).
Farrell, J. M. et al. Tunable low-LUMO boron-doped polycyclic fragrant hydrocarbons by normal one-pot C–H borylations. J. Am. Chem. Soc. 141, 9096–9104 (2019).
Zhang, J.-J. et al. Pushing up the dimensions restrict of boron-doped peri-acenes: modular synthesis and characterizations. Angew. Chem. Int. Ed. 62, e202312055 (2023).
Dou, C., Saito, S., Matsuo, Okay., Hisaki, I. & Yamaguchi, S. A boron-containing PAH as a substructure of boron-doped graphene. Angew. Chem. Int. Ed. 51, 12206–12210 (2012).
Chen, C., Guo, Y., Chang, Z., Müllen, Okay. & Wang, X.-Y. Synthesis of quadruply boron-doped acenes with stimuli-responsive multicolor emission. Nat. Commun. 15, 8555 (2024).
Mützel, C., Farrell, J. M., Shoyama, Okay. & Würthner, F. 12b,24b-diborahexabenzo[a,c,fg,l,n,qr]pentacene: a low-LUMO boron-doped polycyclic fragrant hydrocarbon. Angew. Chem. Int. Ed. 61, e202115746 (2022).
Liu, Y. et al. Photonic modulation enabled by controlling the sting buildings of boron-doped molecular carbons. Angew. Chem. Int. Ed. 62, e202306911 (2023).
Yuan, L. et al. A C54B2 polycyclic π-system with bilayer meeting and multi-redox exercise. CCS Chem. 5, 876–884 (2022).
Hattori, I. et al. In silico screening and experimental verification of near-infrared-emissive two-boron-doped polycyclic fragrant hydrocarbons. Angew. Chem. Int. Ed. 63, e202403829 (2024).
Ito, M., Sakai, M., Ando, N. & Yamaguchi, S. Electron-deficient heteroacenes that include two boron atoms: near-infrared fluorescence primarily based on a push–pull impact. Angew. Chem. Int. Ed. 60, 21853–21859 (2021).
Mützel, C., Shoyama, Okay., Krause, A.-M. & Würthner, F. Synthesis of a helical boron-doped PAH by post-functionalization of three,9-diboraperylene. Organic Chem. Front. 11, 2747–2755 (2024).
Dar, A. A. & Malik, A. A. Photoluminescent natural crystals and co-crystals. J. Mater. Chem. C 12, 9888–9913 (2024).
Yan, D. & Evans, D. G. Molecular crystalline supplies with tunable luminescent properties: from polymorphs to multi-component solids. Mater. Horizons 1, 46–57 (2014).
Wu, Z., Midgley, A. C., Kong, D. & Ding, D. Organic persistent luminescence imaging for biomedical functions. Mater. Today Bio. 17, 100481 (2022).
Hagspiel, S. et al. Modulation of the naked-eye and fluorescence shade of a protonated boron-doped thiazolothiazole by anion-dependent hydrogen bonding. Chem. Eur. J. 28, e202201398 (2022).
Škoch, Okay. et al. Preparation, construction, reactivity, lewis acidic and fluorescence properties of arylpyridine primarily based boron C,N-chelates that includes weakly coordinating anions. Chem. Eur. J. 30, e202403263 (2024).
Maar, R. R., Katzman, B. D., Boyle, P. D., Staroverov, V. N. & Gilroy, J. B. Cationic boron formazanate dyes. Angew. Chem. Int. Ed. 60, 5152–5156 (2021).
Adachi, Y., Arai, F. & Jäkle, F. Extended conjugated borenium dimers by way of late stage functionalization of air-stable borepinium ions. Chem. Commun. 56, 5119–5122 (2020).
Katzman, B. D. et al. A strongly Lewis-acidic and fluorescent borenium cation supported by a tridentate formazanate ligand. Chem. Commun. 57, 9530–9533 (2021).
Watson, A. E. R., Boyle, P. D., Ragogna, P. J., & Gilroy, J. B. Ligand protonation results in extremely fluorescent boronium cations. Chem. Sci. 16, 2258–2264 (2025).
Tsurumaki, E., Hayashi, S.-y, Tham, F. S., Reed, C. A. & Osuka, A. Planar subporphyrin borenium cations. J. Am. Chem. Soc. 133, 11956–11959 (2011).
Piers, W. E., Bourke, S. C. & Conroy, Okay. D. Borinium, borenium, and boronium ions: synthesis, reactivity, and functions. Angew. Chem. Int. Ed. 44, 5016–5036 (2005).
De Vries, T. S., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: borenium chemistry from the natural perspective. Chem. Rev. 112, 4246–4282 (2012).
Nesterov, V. et al. NHCs in primary group chemistry. Chem. Rev. 118, 9678–9842 (2018).
Borthakur, B., Ghosh, B. & Phukan, A. Okay. The flourishing chemistry of carbene stabilized compounds of group 13 and 14 components. Polyhedron 197, 115049 (2021).
Visbal, R. & Gimeno, M. C. N-heterocyclic carbene steel complexes: photoluminescence and functions. Chem. Soc. Rev. 43, 3551–3574 (2014).
Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an especially bent acyclic allene (a ‘carbodicarbene’): a robust donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).
Klein, S., Tonner, R. & Frenking, G. Carbodicarbenes and associated divalent carbon(0) compounds. Chem. Eur. J. 16, 10160–10170 (2010).
Krischer, F. & Gessner, V. H. Ligand trade at carbon: artificial entry to elusive species and versatile reagents. JACS Au 4, 1709–1722 (2024).
He, Y., Lyu, Y., Tymann, D., Antoni, P. W. & Hansmann, M. M. Cleavage of carbodicarbenes with N2O for accessing steady diazoalkenes: two-fold ligand trade at a C0-atom. Angew. Chem. Int. Ed. 64, e202415228 (2024).
Kooij, B., Chen, D. W., Fadaei-Tirani, F. & Severin, Okay. Metal-mediated synthesis of a blended arduengo-fischer carbodicarbene ligand. Angew. Chem. Int. Ed. 63, e202407945 (2024).
Hsu, Y.-C. et al. Synthesis and isolation of an acyclic tridentate bis(pyridine)carbodicarbene and research on its structural implications and reactivities. Angew. Chem. Int. Ed. 54, 2420–2424 (2015).
Dolai, R. et al. Carbodicarbenes and placing redox transitions of their conjugate acids: affect of NHC versus CAAC as donor substituents. Chem. Eur. J. 29, e202202888 (2023).
Xiang, L., Wang, J., Knoblauch, N., Matler, A. & Ye, Q. Conversion of Bestmann ylide into carbophosphinocarbene. Angew. Chem. Int. Ed. 64, e202501955 (2025).
Chan, Y.-C. et al. Isolated carbon(I) species that includes a carbone cation radical. Nat. Synth. (2025).
Chen, W. C. et al. The elusive three-coordinate dicationic hydrido boron complicated. J. Am. Chem. Soc. 136, 914–917 (2014).
Saito, Okay., Kusumoto, S. & Nozaki, Okay. Boron polycation supported by cyclic bis(carbodiphosphorane). Chem. Eur. J. 29, e202302060 (2023).
Scherpf, T., Feichtner, Okay.-S. & Gessner, V. H. Using ylide functionalization to stabilize boron cations. Angew. Chem. Int. Ed. 56, 3275–3279 (2017).
Münzer, J. E. et al. Difluoroborenium cation stabilized by hexaphenyl-carbodiphosphorane: a concise examine on the molecular and digital construction of [(Ph3P)2C⇉BF2][BF4]. Eur. J. Inorg. Chem. 2016, 3852–3858 (2016).
Xiang, L., Wang, J., Su, W., Lin, Z. & Ye, Q. Facile entry to halogenated cationic B·C-centered organoborons isoelectronic with alkenyl halides. Dalton Trans. 50, 17491–17494 (2021).
Deng, C.-L. et al. Air- and photo-stable luminescent carbodicarbene-azaboraacenium ions. Nat. Chem. 16, 437–445 (2024).
Hollister, Okay. Okay. et al. Pentacyclic fused diborepinium ions with carbene- and carbone-mediated deep-blue to crimson emission. Chem. Sci. 15, 14358–14370 (2024).
Hollister, Okay. Okay. et al. Air-stable thermoluminescent carbodicarbene-borafluorenium ions. J. Am. Chem. Soc. 144, 590–598 (2022).
Kim, H. & Gilliard, R. J. Jr. Coordination chemistry meets boron helices: cationic double-stranded diborahelicates and bora[7]helicenes with multicolor emission. J. Am. Chem. Soc. 147, 23213–23225 (2025).
Chan, Y. C. et al. Synergistic catalysis by bronsted acid/carbodicarbene mimicking pissed off lewis pair-like reactivity. Angew. Chem. Int. Ed. 60, 19949–19956 (2021).
Huang, B.-H. et al. Frustrated Lewis pair (FLP) reactivity from carbone–BPh3 Lewis adduct. Chem. Eur. J. 31, e02344 (2025).
Englman, R. & Jortner, J. The power hole regulation for radiationless transitions in massive molecules. Mol. Phys. 18, 145–164 (1970).
Caspar, J. V. & Meyer, T. J. Application of the power hole regulation to nonradiative, excited-state decay. J. Phys. Chem. 87, 952–957 (1983).
Deng, C.-L. et al. Unveiling three interconvertible redox states of boraphenalene. J. Am. Chem. Soc. 146, 6145–6156 (2024).
Mei, J., Leung, N. L. C., Kwok, R. T. Okay., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: collectively we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).
Singh, S., Bhandari, M., Rawat, S. & Nembenna, S. in Polar Organometallic Reagents (eds Wheatley, A. E. H. & Uchiyama, M.) 201–269 (2022).
Engesser, T. A., Lichtenthaler, M. R., Schleep, M. & Krossing, I. Reactive p-block cations stabilized by weakly coordinating anions. Chem. Soc. Rev. 45, 789–899 (2016).
Kelling, L., Eßer, J., Knyszek, D. & Gessner, V. H. Carbon-based weakly coordinating anions: molecular design, synthesis and functions. Angew. Chem. Int. Ed. 63, e202405936 (2024).
Li, Q.-Q. et al. Diazapentabenzocorannulenium: a hydrophilic/biophilic cationic buckybowl. Angew. Chem. Int. Ed. 61, e202112638 (2022).
Wu, D., Pisula, W., Enkelmann, V., Feng, X. & Müllen, Okay. Controllable columnar group of positively charged polycyclic fragrant hydrocarbons by selection of counterions. J. Am. Chem. Soc. 131, 9620–9621 (2009).
Guo, Y. et al. π-Extended doublet open-shell graphene fragments exhibiting one-dimensional chain stacking. J. Am. Chem. Soc. 144, 2095–2100 (2022).
Murai, M., Hosokawa, N., Roy, D. & Takai, Okay. Bismuth-catalyzed synthesis of polycyclic fragrant hydrocarbons (PAHs) with a phenanthrene spine by way of cyclization and aromatization of 2-(2-arylphenyl)vinyl ethers. Org. Lett. 16, 4134–4137 (2014).
Chen, W. C., Hsu, Y. C., Lee, C. Y., Yap, G. P. A. & Ong, T. G. Synthetic modification of acyclic bent allenes (carbodicarbenes) and additional research on their structural implications and reactivities. Organometallics 32, 2435–2442 (2013).
Pranckevicius, C., Liu, L. L., Bertrand, G. & Stephan, D. W. Synthesis of a carbodicyclopropenylidene: a carbodicarbene primarily based solely on carbon. Angew. Chem. Int. Ed. 55, 5536–5540 (2016).
Dudek, W. M., Ostrowski, S. & Dobrowolski, J. C. On aromaticity of the fragrant α-amino acids and tuning of the NICS indices to search out the aromaticity order. J. Phys. Chem. A 126, 3433–3444 (2022).
Stanger, A. Reexamination of NICSπ,zz: top dependence, off-center values, and integration. J. Phys. Chem. A 123, 3922–3927 (2019).
Matito, E. An digital aromaticity index for giant rings. Phys. Chem. Chem. Phys. 18, 11839–11846 (2016).
Casademont-Reig, I. et al. Quest for probably the most fragrant pathway in charged expanded porphyrins. Chem. Eur. J. 29, e202202264 (2023).
Aihara, J.-i, Nakagami, Y., Sekine, R. & Makino, M. Validity and limitations of the bridged annulene mannequin for porphyrins. J. Phys. Chem. A 116, 11718–11730 (2012).
Szczepanik, D. W. et al. The electron density of delocalized bonds (EDDB) utilized for quantifying aromaticity. Phys. Chem. Chem. Phys. 19, 28970–28981 (2017).
Davydov, A. S. in Theory of Molecular Excitons (ed. Davydov, A. S.) 153–243 (Springer, 1971).
Egelhaaf, H. J., Gierschner, J., Haiber, J. & Oelkrug, D. Optical constants of extremely oriented oligothiophene movies and nanoparticles. Opt. Mater. 12, 395–401 (1999).
Egelhaaf, H. J., Gierschner, J. & Oelkrug, D. Polarizability results and power switch in quinquethiophene doped bithiophene and OPV movies. Synth. Met. 127, 221–227 (2002).
Dong, Y. et al. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in natural light-emitting diodes. Appl. Phys. Lett. 91, 011111 (2007).
Wang, L. et al. Novel extremely emissive H-aggregates with combination fluorescence change in a phenylbenzoxazole-based system. Chem. Commun. 50, 8723–8726 (2014).
McLaurin, E. J., Bradshaw, L. R. & Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 25, 1283–1292 (2013).
Wang, X.-d, Wolfbeis, O. S. & Meier, R. J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013).
Wang, M., Wang, R.-Z. & Zhao, C.-H. Temperature-dependent twin fluorescence from small natural molecules. Organic Materials 4, 204–215 (2022).
Takahashi, S. et al. Sulfur-bridged cationic diazulenomethenes: formation of charge-segregated meeting with excessive charge-carrier mobility. J. Am. Chem. Soc. 146, 22642–22649 (2024).
Yamasumi, Okay. et al. Charge-segregated stacking construction with anisotropic electrical conductivity in NIR-absorbing and emitting positively charged π-electronic programs. Angew. Chem. Int. Ed. 62, e202216013 (2023).
Azumi, T., Armstrong, A. T. & McGlynn, S. P. Energy of excimer luminescence. II. Configuration interplay between molecular exciton states and cost resonance states. J. Chem. Phys. 41, 3839–3852 (1964).
Deutsch, M. et al. Geometry relaxation-mediated localization and delocalization of excitons in natural semiconductors: a quantum chemical examine. J. Chem. Phys. 153, 224104 (2020).
Plasser, F. TheoDORE: a toolbox for an in depth and automatic evaluation of digital excited state computations. J. Chem. Phys. 152, 084108 (2020).
Ibele, L. M., Sánchez-Murcia, P. A., Mai, S., Nogueira, J. J. & González, L. Excimer intermediates en path to long-lived charge-transfer states in single-stranded adenine DNA as revealed by nonadiabatic dynamics. J. Phys. Chem. Lett. 11, 7483–7488 (2020).
Plasser, F. & Lischka, H. Analysis of excitonic and cost switch interactions from quantum chemical calculations. J. Chem. Theory Comput. 8, 2777–2789 (2012).
Valeur, B. Effects of intermolecular photophysical processes on fluorescence emission. In Molecular Fluorescence: Principles and Applications 72–124 (Wiley-VCH, 2001).
Wei, Y.-C. et al. Overcoming the power hole regulation in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photonics 14, 570–577 (2020).
Cravcenco, A. et al. Exciton delocalization counteracts the power hole: a brand new pathway towards NIR-emissive dyes. J. Am. Chem. Soc. 143, 19232–19239 (2021).
Young, R. M. & Wasielewski, M. R. Mixed digital states in molecular dimers: connecting singlet fission, excimer formation, and symmetry-breaking cost switch. Acc. Chem. Res. 53, 1957–1968 (2020).
Osako, T. & Uozumi, Y. Enantioposition-selective copper-catalyzed azide–alkyne cycloaddition for development of chiral biaryl derivatives. Org. Lett. 16, 5866–5869 (2014).
Li, Y. F. et al. Two bipolar blue-emitting fluorescent supplies primarily based on 1,3,5-triazine and peripheral pyrene for natural light-emitting diodes. Dyes Pigm. 145, 43–53 (2017).
Bruker. Saint, APEX4 (Bruker AXS Inc., 2019)
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal construction willpower. J. Appl. Crystallogr. 48, 3–10 (2015).
Sheldrick, G. M. SHELXT—built-in space-group and crystal-structure willpower. Acta Crystallogr. Sect. A 71, 3–8 (2015).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. Okay. & Puschmann, H. OLEX2: a whole construction answer, refinement and evaluation program. J. Appl. Crystallogr. 42, 339–341 (2009).
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian Inc., 2016).
Grimme, S. Semiempirical hybrid density practical with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).
Johnson, E. R. & Becke, A. D. A post-Hartree–Fock mannequin of intermolecular interactions: inclusion of higher-order corrections. J. Chem. Phys. 124, 024101 (2006).
Barone, V. & Cossi, M. Quantum calculation of molecular energies and power gradients in answer by a conductor solvent mannequin. J. Phys. Chem. A 102, 1995–2001 (1998).
Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).
Neese, F. Software replace: the ORCA program system–model 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).
Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock trade. Chem. Phys. 356, 98–109 (2009).
Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 6.0: pure bond orbital evaluation program. J. Comput. Chem. 34, 1429–1437 (2013).
Mitoraj, M. P., Michalak, A. & Ziegler, T. A mixed cost and power decomposition scheme for bond evaluation. J. Chem. Theory Comput. 5, 962–975 (2009).
Radon, M. On the properties of pure orbitals for chemical valence. Theor. Chem. Acc. 120, 337–339 (2008).
Zhang, J.-X., Sheong, F. Okay. & Lin, Z. Unravelling chemical interactions with principal interacting orbital evaluation. Chem. Eur. J. 24, 9639–9650 (2018).
Jensen, F. Segmented contracted foundation units optimized for nuclear magnetic shielding. J. Chem. Theory Comput. 11, 132–138 (2015).
Wang, Z. py.Aroma 3: An intuitive graphical person interface for numerous aromaticity analyses. Chemistry 6, 1692–1703 (2024).
Herges, R. & Geuenich, D. Delocalization of electrons in molecules. J. Phys. Chem. A 105, 3214–3220 (2001).
Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Caricato, M. et al. Formation and leisure of excited states in answer: a brand new time dependent polarizable continuum mannequin primarily based on time dependent density practical concept. J. Chem. Phys. 124, 124520 (2006).
Lin, Y.-S., Li, G.-D., Mao, S.-P. & Chai, J.-D. Long-range corrected hybrid density functionals with improved dispersion corrections. J. Chem. Theory Comput. 9, 263–272 (2013).
Madjet, M. E., Abdurahman, A. & Renger, T. Intermolecular coulomb couplings from ab initio electrostatic potentials: utility to optical transitions of strongly coupled pigments in photosynthetic antennae and response facilities. J. Phys. Chem. B 110, 17268–17281 (2006).
te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).
Yanai, T., Tew, D. P. & Handy, N. C. A brand new hybrid trade–correlation practical utilizing the Coulomb-attenuating technique (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).
Fedorov, D. G. & Kitaura, Okay. Pair interplay power decomposition evaluation. J. Comput. Chem. 28, 222–237 (2007).
Barca, G. M. J. et al. Recent developments within the normal atomic and molecular digital construction system. J. Chem. Phys. 152, 154102 (2020).
Papajak, E., Zheng, J. J., Xu, X. F., Leverentz, H. R. & Truhlar, D. G. Perspectives on foundation units stunning: seasonal plantings of diffuse foundation features. J. Chem. Theory Comput. 7, 3027–3034 (2011).
Zheng, J. J., Xu, X. F. & Truhlar, D. G. Minimally augmented Karlsruhe foundation units. Theor. Chem. Acc. 128, 295–305 (2011).
末永, 正. PC GAMESSのための新しい計算化学統合環境Facioの開発. J. Comput. Chem. Japan (2005).
This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41557-025-01941-6
and if you wish to take away this text from our web site please contact us
