This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09664-x
and if you wish to take away this text from our website please contact us
Hanchate, N. Ok. et al. Single-cell transcriptomics reveals receptor transformations throughout olfactory neurogenesis. Science 350, 1251–1255 (2015).
Tan, L., Li, Q. & Xie, X. S. Olfactory sensory neurons transiently categorical a number of olfactory receptors throughout growth. Mol. Syst. Biol. 11, 844 (2015).
Fuss, S. H. & Ray, A. Mechanisms of odorant receptor gene selection in Drosophila and vertebrates. Mol. Cell. Neurosci. 41, 101–112 (2009).
Barnes, I. H. A. et al. Expert curation of the human and mouse olfactory receptor gene repertoires identifies conserved coding areas cut up throughout two exons. BMC Genom. 21, 196 (2020).
Ressler, Ok. J., Sullivan, S. L. & Buck, L. B. A zonal group of odorant receptor gene expression within the olfactory epithelium. Cell 73, 597–609 (1993).
Markenscoff-Papadimitriou, E. et al. Enhancer interplay networks as a way for singular olfactory receptor expression. Cell 159, 543–557 (2014).
Dalton, R. P., Lyons, D. B. & Lomvardas, S. Co-opting the unfolded protein response to elicit olfactory receptor suggestions. Cell 155, 321–332 (2013).
Pourmorady, A. D. et al. RNA-mediated symmetry breaking permits singular olfactory receptor selection. Nature 625, 181–188 (2024).
Dalton, R. P. & Lomvardas, S. Chemosensory receptor specificity and regulation. Annu. Rev. Neurosci. 38, 331–349 (2015).
Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression within the Drosophila antenna. Cell 96, 725–736 (1999).
McLaughlin, C. N. et al. Single-cell transcriptomes of growing and grownup olfactory receptor neurons in Drosophila. eLife 10, e63856 (2021).
Mermet, J. et al. Multilayer regulation underlies the useful precision and evolvability of the olfactory system. Preprint at bioRxiv (2025).
Tichy, A. L., Ray, A. & Carlson, J. R. A brand new Drosophila POU gene, pdm3, acts in odor receptor expression and axon concentrating on of olfactory neurons. J. Neurosci. 28, 7121–7129 (2008).
Clyne, P. J. et al. A novel household of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).
Li, Q. et al. A functionally conserved gene regulatory community module governing olfactory neuron range. PLoS Genet. 12, e1005780 (2016).
Endo, Ok., Aoki, T., Yoda, Y., Kimura, Ok.-I. & Hama, C. Notch sign organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat. Neurosci. 10, 153–160 (2007).
Ray, A., van Naters, W., van der, G., Shiraiwa, T. & Carlson, J. R. Mechanisms of odor receptor gene selection in Drosophila. Neuron 53, 353–369 (2007).
Yan, H. et al. An engineered orco mutation produces aberrant social conduct and faulty neural growth in ants. Cell 170, 736–747 (2017).
Zhou, X. et al. Phylogenetic and transcriptomic evaluation of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet. 8, e1002930 (2012).
McKenzie, S. Ok. & Kronauer, D. J. C. The genomic structure and molecular evolution of ant odorant receptors. Genome Res. 28, 1757–1765 (2018).
Pask, G. M. et al. Specialized odorant receptors in social bugs that detect cuticular hydrocarbon cues and candidate pheromones. Nat. Commun. 8, 297 (2017).
Slone, J. D. et al. Functional characterization of odorant receptors within the ponerine ant, Harpegnathos saltator. Proc. Natl Acad. Sci. USA 114, 8586–8591 (2017).
Brahma, A. et al. Transcriptional and post-transcriptional management of odorant receptor selection in ants. Curr. Biol. 33, 5456–5466 (2023).
Sieriebriennikov, B. et al. Orco-dependent survival of odorant receptor neurons in ants. Sci. Adv. 10, eadk9000 (2024).
Mika, Ok. et al. Olfactory receptor-dependent receptor repression in Drosophila. Sci. Adv. 7, eabe3745 (2021).
Gruber, A. J. et al. A complete evaluation of three’ finish sequencing information units reveals novel polyadenylation alerts and the repressive function of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res. 26, 1145–1159 (2016).
Zeng, Y., Zhang, H.-W., Wu, X.-X. & Zhang, Y. Structural foundation of exoribonuclease-mediated mRNA transcription termination. Nature 628, 887–893 (2024).
Proudfoot, N. J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352, aad9926 (2016).
Calvo-Roitberg, E. et al. Challenges in figuring out mRNA transcript begins and ends from long-read sequencing information. Genome Res. 34, 1719–1734 (2024).
Ohler, U., Liao, G.-C., Niemann, H. & Rubin, G. M. Computational evaluation of core promoters within the Drosophila genome. Genome Biol. 3, R87 (2002).
FitzGerald, P. C., Sturgill, D., Shyakhtenko, A., Oliver, B. & Vinson, C. Comparative genomics of Drosophila and human core promoters. Genome Biol. 7, R53 (2006).
Vo Ngoc, L., Cassidy, C. J., Huang, C. Y., Duttke, S. H. C. & Kadonaga, J. T. The human initiator is a definite and ample aspect that’s exactly positioned in targeted core promoters. Genes Dev. 31, 6–11 (2017).
Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).
Sieriebriennikov, B., Reinberg, D. & Desplan, C. A molecular toolkit for superorganisms. Trends Genet. 37, 846–859 (2021).
Greger, I. H. & Proudfoot, N. J. Poly(A) alerts management each transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J. 17, 4771–4779 (1998).
Hainer, S. J., Pruneski, J. A., Mitchell, R. D., Monteverde, R. M. & Martens, J. A. Intergenic transcription causes repression by directing nucleosome meeting. Genes Dev. 25, 29–40 (2011).
Greger, I. H., Aranda, A. & Proudfoot, N. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 8415–8420 (2000).
Tsompana, M. & Buck, M. J. Chromatin accessibility: a window into the genome. Epigenet. Chromatin 7, 33 (2014).
Makalowska, I., Lin, C.-F. & Makalowski, W. Overlapping genes in vertebrate genomes. Comput. Biol. Chem. 29, 1–12 (2005).
Rosa, S., Duncan, S. & Dean, C. Mutually unique sense–antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 7, 13031 (2016).
Kiefer, L. et al. WAPL features as a rheostat of protocadherin isoform range that controls neural wiring. Science 380, eadf8440 (2023).
Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter selection. Cell 177, 639–653 (2019).
Hobson, D. J., Wei, W., Steinmetz, L. M. & Svejstrup, J. Q. RNA polymerase II collision interrupts convergent transcription. Mol. Cell 48, 365–374 (2012).
Zhang, W. et al. Evolutionary course of underlying receptor gene growth and mobile divergence of olfactory sensory neurons in honeybees. Mol. Biol. Evol. 42, msaf080 (2025).
Prieto-Godino, L. L. et al. Evolution of acid-sensing olfactory circuits in drosophilids. Neuron 93, 661–676 (2017).
Chen, Y.-C. A. et al. Cutoff suppresses RNA polymerase II termination to make sure expression of piRNA precursors. Mol. Cell 63, 97–109 (2016).
Sieber, Ok. et al. Embryo injections for CRISPR-mediated mutagenesis within the ant Harpegnathos saltator. J. Vis. Exp. (2021).
Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets recognized by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008).
Wang, W. et al. The preliminary uridine of main piRNAs doesn’t create the tenth adenine that Is the hallmark of secondary piRNAs. Mol. Cell 56, 708–716 (2014).
Kim, H. et al. Bias-minimized quantification of microRNA reveals widespread various processing and three’ finish modification. Nucleic Acids Res. 47, 2630–2640 (2019).
Fu, Y., Wu, P.-H., Beane, T., Zamore, P. D. & Weng, Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq utilizing distinctive molecular identifiers. BMC Genom. 19, 531 (2018).
Ibrahim, F., Oppelt, J., Maragkakis, M. & Mourelatos, Z. TERA-seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Res. 49, e115 (2021).
Liu, N. et al. Direct promoter repression by BCL11A controls the fetal to grownup hemoglobin change. Cell 173, 430–442 (2018).
Niimura, Y. & Nei, M. Comparative evolutionary evaluation of olfactory receptor gene clusters between people and mice. Gene 346, 13–21 (2005).
Shields, E. J., Sheng, L., Weiner, A. Ok., Garcia, B. A. & Bonasio, R. High-quality genome assemblies reveal lengthy non-coding RNAs expressed in ant brains. Cell Rep. 23, 3078–3090 (2018).
Gomez-Diaz, C., Martin, F., Garcia-Fernandez, J. M. & Alcorta, E. The two important olfactory receptor households in Drosophila, ORs and IRs: acomparative method. Front. Cell. Neurosci. 12, 253 (2018).
Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell growth and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression information evaluation. Genome Biol. 19, 15 (2018).
Gayoso, A. et al. A Python library for probabilistic evaluation of single-cell omics information. Nat. Biotechnol. 40, 163–166 (2022).
Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the grownup fruit fly. Science 375, eabk2432 (2022).
Virtanen, P. et al. SciPy 1.0: elementary algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).
Gospocic, J. et al. Kr-h1 maintains distinct caste-specific neurotranscriptomes in response to socially regulated hormones. Cell 184, 5807–5823 (2021).
Quinlan, A. R. & Hall, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).
Li, H. New methods to enhance minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Ramírez, F. et al. deepTools2: a subsequent era net server for deep-sequencing information evaluation. Nucleic Acids Res. 44, W160–W165 (2016).
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).
Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore methods. In Proc. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 (IEEE, 2019).
Hoskins, R. A. et al. Genome-wide evaluation of promoter structure in Drosophila melanogaster. Genome Res. 21, 182–192 (2011).
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview model 2—a a number of sequence alignment editor and evaluation workbench. Bioinformatics 25, 1189–1191 (2009).
This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09664-x
and if you wish to take away this text from our website please contact us
