Electronic fibres by way of the thermal drawing of liquid-metal-embedded elastomers

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41928-025-01485-0
and if you wish to take away this text from our website please contact us


  • Rich, S. I., Wood, R. J. & Majidi, C. Untethered delicate robotics. Nat. Electron. 1, 102–112 (2018).

    Article 

    Google Scholar
     

  • Libanori, A., Chen, G., Zhao, X., Zhou, Y. & Chen, J. Smart textiles for personalised healthcare. Nat. Electron. 5, 142–156 (2022).

    Article 

    Google Scholar
     

  • Kim, D. C., Shim, H. J., Lee, W., Koo, J. H. & Kim, D. H. Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32, 1902743 (2020).

    Article 

    Google Scholar
     

  • Dickey, M. D. Stretchable and delicate electronics utilizing liquid metals. Adv. Mater. 29, 1606425 (2017).

    Article 

    Google Scholar
     

  • Zolfaghari, N., Khandagale, P., Ford, M. J., Dayal, Ok. & Majidi, C. Network topologies dictate electromechanical coupling in liquid metal-elastomer composites. Soft Matter 16, 8818–8825 (2020).

    Article 

    Google Scholar
     

  • Zheng, L. et al. Conductance-stable liquid metallic sheath-core microfibers for stretchy sensible materials and self-powered sensing. Sci. Adv. 7, eabg4041 (2021).

    Article 

    Google Scholar
     

  • Parida, Ok. et al. Extremely stretchable and self-healing conductor based mostly on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat. Commun. 10, 2158 (2019).

    Article 

    Google Scholar
     

  • Kazem, N., Hellebrekers, T. & Majidi, C. Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29, 1605985 (2017).

    Article 

    Google Scholar
     

  • Ho, D. H., Hu, C., Li, L. & Bartlett, M. D. Soft digital vias and interconnects by speedy three-dimensional meeting of liquid metallic microdroplets. Nat. Electron. 7, 1015–1024 (2024).

    Article 

    Google Scholar
     

  • Lee, W. et al. Universal meeting of liquid metallic particles in polymers permits elastic printed circuit board. Science 378, 637–641 (2022).

    Article 

    Google Scholar
     

  • Lin, Z. et al. High inner part emulsions gel ink for direct-ink-writing 3D printing of liquid metallic. Nat. Commun. 15, 4806 (2024).

    Article 

    Google Scholar
     

  • Ford, M. J., Patel, D. Ok., Pan, C., Bergbreiter, S. & Majidi, C. Controlled meeting of liquid metallic inclusions as a normal strategy for multifunctional composites. Adv. Mater. 32, 2002929 (2020).

    Article 

    Google Scholar
     

  • Won, P. et al. 3D printing of liquid metallic embedded elastomers for delicate thermal and electrical supplies. ACS Appl. Mater. Interfaces 14, 55028–55038 (2022).

    Article 

    Google Scholar
     

  • Lee, G. H. et al. Rapid meniscus-guided printing of steady semi-solid-state liquid metallic microgranular-particle for delicate electronics. Nat. Commun. 13, 2643 (2022).

    Article 

    Google Scholar
     

  • Tutika, R., Haque, A. B. M. T. & Bartlett, M. D. Self-healing liquid metallic composite for reconfigurable and recyclable delicate electronics. Commun. Mater. 2, 64 (2021).

    Article 

    Google Scholar
     

  • Krisnadi, F. et al. Directed meeting of liquid metallic–elastomer conductors for stretchable and self-healing electronics. Adv. Mater. 32, 2001642 (2020).

    Article 

    Google Scholar
     

  • Markvicka, E. J., Bartlett, M. D., Huang, X. & Majidi, C. An autonomously electrically self-healing liquid metal-elastomer composite for sturdy soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018).

    Article 

    Google Scholar
     

  • Reis Carneiro, M., Majidi, C. & Tavakoli, M. Multi-electrode printed bioelectronic patches for long-term electrophysiological monitoring. Adv. Funct. Mater. 32, 2205956 (2022).

    Article 

    Google Scholar
     

  • Li, G. et al. Three-dimensional versatile electronics utilizing solidified liquid metallic with regulated plasticity. Nat. Electron. 6, 154–163 (2023).

    Article 

    Google Scholar
     

  • Yun, G. et al. Liquid metal-filled magnetorheological elastomer with optimistic piezoconductivity. Nat. Commun. 10, 1300 (2019).

    Article 

    Google Scholar
     

  • Yun, G. et al. Liquid metallic composites with anisotropic and unconventional piezoconductivity. Matter 3, 824–841 (2020).

    Article 

    Google Scholar
     

  • Koh, A., Sietins, J., Slipher, G. & Mrozek, R. Deformable liquid metallic polymer composites with tunable digital and mechanical properties. J. Mater. Res. 33, 2443–2453 (2018).

    Article 

    Google Scholar
     

  • Tutika, R., Kmiec, S., Tahidul Haque, A. B. M., Martin, S. W. & Bartlett, M. D. Liquid metal-elastomer delicate composites with independently controllable and extremely tunable droplet dimension and quantity loading. ACS Appl. Mater. Interfaces 11, 17873–17883 (2019).

    Article 

    Google Scholar
     

  • Bartlett, M. D. et al. Stretchable, high-okay dielectric elastomers by liquid-metal inclusions. Adv. Mater. 28, 3726–3731 (2016).

    Article 

    Google Scholar
     

  • Cooper, C. B. et al. Stretchable capacitive sensors of torsion, pressure, and contact utilizing double helix liquid metallic fibers. Adv. Funct. Mater. 27, 1605630 (2017).

    Article 

    Google Scholar
     

  • Lin, R. et al. Digitally-embroidered liquid metallic digital textiles for wearable wi-fi programs. Nat. Commun. 13, 2190 (2022).

    Article 

    Google Scholar
     

  • Qu, Y. et al. Superelastic multimaterial digital and photonic fibers and units by way of thermal drawing. Adv. Mater. 30, 1707251 (2018).

    Article 

    Google Scholar
     

  • Yu, R. et al. Dynamic liquid metallic–microfiber interlocking permits extremely conductive and strain-insensitive metastructured fibers for wearable electronics. Adv. Mater. 37, 2415268 (2024).

    Article 

    Google Scholar
     

  • Lee, G. H. et al. Conductance steady and mechanically sturdy bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics. Nat. Commun. 14, 4173 (2023).

    Article 

    Google Scholar
     

  • Lee, G.-H. et al. Meter-scale heterostructure printing for high-toughness fiber electrodes in clever digital attire. Nat. Commun. 16, 4320 (2025).

    Article 

    Google Scholar
     

  • Leber, A. et al. Thermally drawn elastomer nanocomposites for delicate mechanical sensors. Adv. Sci. 10, 2207573 (2023).

    Article 

    Google Scholar
     

  • Dong, C. et al. High-efficiency super-elastic liquid metallic based mostly triboelectric fibers and textiles. Nat. Commun. 11, 3537 (2020).

    Article 

    Google Scholar
     

  • Dong, C. et al. 3D stretchable and self-encapsulated multimaterial triboelectric fibers. Sci. Adv. 8, 869 (2022).

    Article 

    Google Scholar
     

  • Banerjee, H. et al. Soft multimaterial magnetic fibers and textiles. Adv. Mater. 35, 2212202 (2023).

    Article 

    Google Scholar
     

  • Leber, A. et al. Soft and stretchable liquid metallic transmission traces as distributed probes of multimodal deformations. Nat. Electron. 3, 316–326 (2020).

    Article 

    Google Scholar
     

  • Leber, A. et al. Highly built-in multi-material fibers for delicate robotics. Adv. Sci. 10, 2204016 (2023).

    Article 

    Google Scholar
     

  • Chen, M. et al. Self-powered multifunctional sensing based mostly on super-elastic fibers by soluble-core thermal drawing. Nat. Commun. 12, 1416 (2021).

    Article 

    Google Scholar
     

  • Elton, E. S. et al. Dramatic impact of oxide on measured liquid metallic rheology. J. Rheol. 64, 119–128 (2020).

    Article 

    Google Scholar
     

  • Larsen, R. J., Dickey, M. D., Whitesides, G. M. & Weitz, D. A. Viscoelastic properties of oxide-coated liquid metals. J. Rheol. 53, 1305–1326 (2009).

    Article 

    Google Scholar
     

  • Dickey, M. D. et al. Eutectic gallium-indium (EGaIn): a liquid metallic alloy for the formation of steady buildings in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008).

    Article 

    Google Scholar
     

  • Nesaei, S., Cavanagh, D. J. & Gozen, A. Rheology of liquid metallic particle-based polymer composites: a comparative examine. J. Rheol. 63, 559–568 (2019).

    Article 

    Google Scholar
     

  • Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer digital circuits utilizing biphasic gallium-indium. Nat. Mater. 20, 851–858 (2021).

    Article 

    Google Scholar
     

  • Kaufman, J. J. et al. Structured spheres generated by an in-fibre fluid instability. Nature 487, 463–467 (2012).

    Article 

    Google Scholar
     

  • Yaman, M. et al. Arrays of indefinitely lengthy uniform nanowires and nanotubes. Nat. Mater. 10, 494–501 (2011).

    Article 

    Google Scholar
     

  • Wei, L. et al. Optoelectronic fibers by way of selective amplification of in-fiber capillary instabilities. Adv. Mater. 29, 1603033 (2017).

    Article 

    Google Scholar
     

  • Zhao, J. & Li, X. An extended wavelength mannequin for manufacturing of steady metallic microwires by thermal fiber drawing from a preform. J. Micro-Nano-Manuf. 6, 011003 (2018).

    Article 

    Google Scholar
     

  • Xue, S., Barton, G. W., Fleming, S. & Argyros, A. Analysis of capillary instability in metamaterials fabrication utilizing fiber drawing expertise. J. Lightwave Technol. 35, 2167–2174 (2017).

    Article 

    Google Scholar
     

  • Page, A. G., Bechert, M., Gallaire, F. & Sorin, F. Unraveling radial dependency results in fiber thermal drawing. Appl. Phys. Lett. 115, 044102 (2019).

    Article 

    Google Scholar
     

  • Thrasher, C. J., Farrell, Z. J., Morris, N. J., Willey, C. L. & Tabor, C. E. Mechanoresponsive polymerized liquid metallic networks. Adv. Mater. 31, 1903864 (2019).

    Article 

    Google Scholar
     

  • Yao, B. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, 1907499 (2020).

    Article 

    Google Scholar
     

  • Amjadi, M., Kyung, Ok. U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable pressure sensors and their potential purposes: a evaluate. Adv. Funct. Mater. 26, 1678–1698 (2016).

    Article 

    Google Scholar
     

  • Liu, R. et al. Investigation of regular knees kinematics in strolling and working at totally different speeds utilizing a transportable movement evaluation system. Sports Biomech. 23, 417–430 (2024).

    Article 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41928-025-01485-0
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *