Oomycete plant pathogens: biology, pathogenesis and rising management methods

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41579-025-01248-w
and if you wish to take away this text from our web site please contact us


  • Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Matari, N. H. & Blair, J. E. A multilocus timescale for oomycete evolution estimated underneath three distinct molecular clock fashions. BMC Evol. Biol. 14, 101 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beakes, G. W., Glockling, S. L. & Sekimoto, S. The evolutionary phylogeny of the oomycete “fungi”. Protoplasma 249, 3–19 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Latijnhouwers, M., de Wit, P. & Govers, F. Oomycetes and fungi: related weaponry to assault vegetation. Trends Microbiol. 11, 462–469 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Kamoun, S. et al. The Top 10 oomycete pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 16, 413–434 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Austin Bourke, P. M. Emergence of potato blight, 1843–1846. Nature 203, 805–808 (1964).

    Article 

    Google Scholar
     

  • Koledenkova, Okay. et al. Plasmopara viticola the causal agent of downy mildew of grapevine: from its taxonomy to illness administration. Front. Microbiol. 13, 889472 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradshaw, R. E. et al. Phytophthora agathidicida: analysis progress, cultural views and data gaps within the management and administration of kauri dieback in New Zealand. Plant Pathol. 69, 3–16 (2020).

    Article 

    Google Scholar
     

  • van den Berg, A. H., McLaggan, D., Diéguez-Uribeondo, J. & van West, P. The influence of the water moulds Saprolegnia diclina and Saprolegnia parasitica on pure ecosystems and the aquaculture trade. Fungal Biol. Rev. 27, 33–42 (2013).

    Article 

    Google Scholar
     

  • Becking, T. et al. Pathogenicity of animal and plant parasitic Aphanomyces spp and their financial influence on aquaculture and agriculture. Fungal Biol. Rev. 40, 1–18 (2022).

    Article 

    Google Scholar
     

  • de Moraes Gimenes Bosco, S., Chechi, J. L., da Paz, G. S. & Krajaejun, T. in Recent Trends in Human and Animal Mycology (eds Singh Okay. & Srivastava N.) 3–26 (Springer, 2019).

  • Badis, Y. et al. Hidden range within the oomycete genus Olpidiopsis is a possible hazard to crimson algal cultivation and conservation worldwide. Eur. J. Pharmacol. 55, 162–171 (2020).


    Google Scholar
     

  • Govers, F. in Agrios’ Plant Pathology sixth edn (ed. Oliver, R.P.) 435–463 (Academic, 2024).

  • Thines, M. Oomycetes. Curr. Biol. 28, R812–R813 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Judelson, H. S. & Blanco, F. A. The spores of Phytophthora: weapons of the plant destroyer. Nat. Rev. Micro. 3, 47–58 (2005).

    Article 

    Google Scholar
     

  • Hardham, A. R. in Oomycete Genetics and Genomics (eds Lamour, Okay. & Kamoun, S.) 93–119 (Wiley, 2009).

  • Judelson, H. S. in Oomycete Genetics and Genomics (ed Lamour, Okay. and Kamoun, S.) 121–138 (Wiley, 2009).

  • Qi, J. et al. Characterization of a Phytophthora mating hormone. Science 309, 1828 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ojika, M. et al. The second Phytophthora mating hormone defines interspecies biosynthetic crosstalk. Nat. Chem. Biol. 7, 591–593 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Pei, Y. et al. A Phytophthora receptor-like kinase regulates oospore improvement and might activate pattern-triggered plant immunity. Nat. Commun. 14, 4593 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Chemotaxis and oospore formation in Phytophthora sojae are managed by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase area. Mol. Microbiol. 88, 382–394 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. The consensus Nglyco-X-S/T motif and a beforehand unknown Nglyco-N-linked glycosylation are mandatory for development and pathogenicity of Phytophthora. Environ. Microbiol. 23, 5147–5163 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, H. et al. Specific interplay of an RNA-binding protein with the three′-UTR of its goal mRNA is vital to oomycete sexual replica. PLoS Pathog. 17, e1010001 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, W. et al. Increased frequency of self-fertile isolates in Phytophthora infestans could attribute to their larger health relative to the A1 isolates. Sci. Rep. 6, 29428 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Poucke, Okay. et al. Unravelling hybridization in Phytophthora utilizing phylogenomics and genome measurement estimation. IMA Fungus 12, 16 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brasier, C. M. et al. Phytophthora alni sp. nov. and its variants: designation of rising heteroploid hybrid pathogens spreading on alnus timber. Mycol. Res. 108, 1172–1184 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Goss, E. M. et al. The plant pathogen Phytophthora andina emerged through hybridization of an unknown Phytophthora species and the Irish Potato Famine pathogen, P. infestans PLoS ONE 6, e2454 (2011).

    Article 

    Google Scholar
     

  • Tyler, B. M. Phytophthora sojae: root rot pathogen of soybean and mannequin oomycete. Mol. Plant Pathol. 8, 1–8 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Fry, W. Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9, 385–402 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hardham, A. R. & Blackman, L. M. Phytophthora cinnamomi. Mol. Plant Pathol. 19, 260–285 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Brasier, C. M. et al. Preserving the biologically coherent generic idea of Phytophthora, “plant destroyer”. Phytopathology 115, 573–586 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Rodenburg, S. Y. A., de Ridder, D., Govers, F. & Seidl, M. F. Oomycete metabolism is extremely dynamic and displays life-style variations. Mol. Plant Microbe Interact. 37, 571–582 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Judelson, H. S. Dynamics and improvements inside oomycete genomes: insights into biology, pathology, and evolution. Eukaryot. Cell 11, 1304–1312 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidl, M. F. & Van den Ackerveken, G. Activity and phylogenetics of the broadly occurring household of microbial Nep1-like proteins. Annu. Rev. Phytopathol. 57, 367–386 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Albert, I. et al. An RLP23–SOBIR1–BAK1 advanced mediates NLP-triggered immunity. Nat. Plants 1, 15140 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Carella, P., Gogleva, A., Tomaselli, M., Alfs, C. & Schornack, S. Phytophthora palmivora establishes tissue-specific intracellular an infection constructions within the earliest divergent land plant lineage. Proc. Natl Acad. Sci. USA 115, E3846–E3855 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overdijk, E. J. R. et al. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence. J. Microsc. 263, 171–180 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tyler, B. M. et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261–126 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • McGowan, J. & Fitzpatrick, D. A. Genomic, community, and phylogenetic evaluation of the oomycete effector arsenal. mSphere 2, e00408–e00417 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baxter, L. et al. Signatures of adaptation to obligate biotrophy within the Hyaloperonospora arabidopsidis genome. Science 330, 1549–1551 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, B. J. et al. Genome sequence and evaluation of the Irish Potato Famine pathogen Phytophthora infestans. Nature 461, 393–398 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S., McLellan, H., Boevink, P. C. & Birch, P. R. J. RxLR effectors: grasp modulators, modifiers and manipulators. Mol. Plant Microbe Interact. 36, 754–763 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Fabro, G. Oomycete intracellular effectors: specialised weapons focusing on strategic plant processes. N. Phytol. 233, 1074–1082 (2022).

    Article 

    Google Scholar
     

  • Raffaele, S. et al. Genome evolution following host jumps within the Irish Potato Famine pathogen lineage. Science 330, 1540–1543 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Thines, M. An evolutionary framework for host shifts — leaping ships for survival. Proc. Natl Acad. Sci. USA 224, 605–617 (2019).


    Google Scholar
     

  • McLellan, H. et al. Exploiting breakdown in nonhost effector–goal interactions to spice up host illness resistance. Proc. Natl Acad. Sci. USA 119, e2114064119 (2022). This examine exhibits that disrupting pathogen effector–host goal interactions by leveraging non-host goal orthologues in potato will increase resistance to. P. infestans.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, X. et al. A typical NLR acknowledges a household of structurally conserved effectors to confer plant resistance in opposition to tailored and non-adapted Phytophthora pathogens. Mol. Plant 18, 485–500 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • van West, P., de Jong, A. J., Judelson, H. S., Emons, A. M. C. & Govers, F. The ipiO gene of Phytophthora infestans is extremely expressed in invading hyphae throughout an infection. Fungal Genet. Biol. 23, 126–138 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Latijnhouwers, M., Ligterink, W., Vleeshouwers, V. G. A. A., van West, P. & Govers, F. A Gα subunit controls zoospore motility and virulence within the potato late blight pathogen Phytophthora infestans. Mol. Microbiol. 51, 925–936 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Hua, C. et al. A Phytophthora sojae G-protein α subunit is concerned in chemotaxis to soybean isoflavones. Eukaryot. Cell 7, 2133–2140 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Homma, F., Huang, J. & van der Hoorn, R. A. L. AlphaFold-Multimer predicts cross-kingdom interactions on the plant-pathogen interface. Nat. Commun. 14, 6040 (2023). This examine exhibits that AlphaFold-Multimer can successfully predict protein interactions throughout plant–pathogen interactions.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arroyo-Velez, N., González-Fuente, M., Peeters, N., Lauber, E. & Noël, L. D. From effectors to effectomes: are purposeful research of particular person effectors sufficient to decipher plant pathogen infectious methods? PLoS Pathog. 16, e1009059 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petre, B. et al. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a serious effector-targeted course of. Plant Cell 33, 1447–1471 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seong, Okay. & Krasileva, Okay. V. Prediction of effector protein constructions from fungal phytopathogens allows evolutionary analyses. Nat. Microbiol. 8, 174–187 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim, T. et al. AlphaFold2-Multimer guided high-accuracy prediction of typical and atypical ATG8-binding motifs. PLoS Biol. 21, e3001962 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuen, E. L. H. et al. A pathogen effector co-opts a number RabGAP protein to transform pathogen interface and subvert defense-related secretion. Sci. Adv. 10, eado9516 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verhoeven, T. et al. LbCas12-mediated multiplex gene modifying and 2-fluoroadenine counter-selection in Phytophthora palmivora. Preprint at bioRxiv (2024).

  • Evangelisti, E. et al. Hydrodynamic form modifications underpin nuclear rerouting in branched hyphae of an oomycete pathogen. mBio 10, e01516-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Sterol-sensing area (SSD)-containing proteins in sterol auxotrophic Phytophthora capsici mediate sterol signaling and play a job in asexual replica and pathogenicity. Microbiol. Spectr. 11, e0379722 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Complete telomere-to-telomere genomes uncover virulence evolution conferred by chromosome fusion in oomycete plant pathogens. Nat. Commun. 15, 4624 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skiadas, P. et al. Pangenome graph evaluation reveals intensive effector copy-number variation in spinach downy mildew. PLoS Genet. 20, e1011452 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fletcher, Okay. et al. Ancestral chromosomes for household peronosporaceae inferred from a telomere-to-telomere genome meeting of Peronospora effusa. Mol. Plant Microbe Interact. 35, 450–463 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Matson, M. E. H., Liang, Q., Lonardi, S. & Judelson, H. S. Karyotype variation, spontaneous genome rearrangements affecting chemical insensitivity, and expression degree polymorphisms within the plant pathogen Phytophthora infestans revealed utilizing its first chromosome-scale meeting. PLoS Pathog. 18, e1010869 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Whole genome re-sequencing reveals pure variation and adaptive evolution of Phytophthora sojae. Front. Microbiol. 10, 2792 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. D. et al. Genomic characterization of a South American Phytophthora hybrid mandates reassessment of the geographic origins of Phytophthora infestans. Mol. Biol. Evol. 33, 478–491 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Coomber, A. L. et al. A pangenome evaluation reveals the middle of origin and evolutionary historical past of Phytophthora infestans and 1c clade species. PLoS ONE 20, e0314509 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, Q. D. et al. Coordination of two reverse flagella permits high-speed swimming and lively turning of particular person zoospores. eLife 11, e71227 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasteel, M., Rajamuthu, T. P., Sprakel, J., Ketelaar, T. & Govers, F. Phytophthora zoospores show klinokinetic behaviour in response to a chemoattractant. PLoS Pathog. 20, e1012577 (2024). This examine makes use of a sophisticated high-speed microscopy system to straight visualize zoospore behaviour.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyler, B. M. Molecular foundation of recognition between Phytophthora pathogens and their hosts. Annu. Rev. Phytopathol. 40, 137–167 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Kasteel, M., Ketelaar, T. & Govers, F. Fatal attraction: how Phytophthora zoospores discover their host. Semin. Cell Dev. Biol. 148149, 13–21 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Moratto, E., Rothery, S., Bozkurt, T. O. & Sena, G. Enhanced germination and electrotactic behaviour of Phytophthora palmivora zoospores in weak electrical fields. Phys. Biol. (2023).

  • Zhang, Z. et al. Phytophthora sojae zoospores differ in chemotaxis to the basis and root exudates of host soybean and nonhost frequent bean. J. Gen. Plant Pathol. 85, 201–210 (2019).

    Article 

    Google Scholar
     

  • Ji, P. et al. Blocking the isoflavone chemoreceptor in Phytophthora sojae to stop illness. Sci. Adv. 11, eadt0925 (2025). This examine identifies an LRR-RLK as the primary receptor in Phytophthora for an isoflavone.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si, J. et al. Phytophthora sojae leucine-rich repeat receptor-like kinases: numerous and important roles in improvement and pathogenicity. iScience 24, 102725 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. PsHint1, related to the G-protein α subunit PsGPA1, is required for the chemotaxis and pathogenicity of Phytophthora sojae. Mol. Plant Pathol. 17, 272–285 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Qiu, M. et al. Phase-specific transcriptional patterns of the oomycete pathogen Phytophthora sojae unravel genes important for asexual improvement and pathogenic processes. PLoS Pathog. 19, e1011256 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, C. et al. GK4, a G-protein-coupled receptor with a phosphatidylinositol phosphate kinase area in Phytophthora infestans, is concerned in sporangia improvement and virulence. Mol. Microbiol. 88, 352–370 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • van den Hoogen, D. J., Meijer, H. J. G., Seidl, M. F. & Govers, F. The historic hyperlink between G-protein-coupled receptors and C-terminal phospholipid kinase domains. mBio 9, e02119-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latijnhouwers, M. & Govers, F. A Phytophthora infestans G-protein β subunit is concerned in sporangium formation. Eukaryot. Cell 2, 971–977 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Hoogen, J., Verbeek-de Kruif, N. & Govers, F. The G-protein γ subunit of Phytophthora infestans is concerned in sporangial improvement. Fungal Genet. Biol. 116, 73–82 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • van den Hoogen, J. & Govers, F. GPCR-bigrams: enigmatic signaling parts in oomycetes. PLoS Pathog. 14, e1007064 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diévart, A. et al. Leucine-rich repeat receptor kinases are sporadically distributed in eukaryotic genomes. BMC Evol. Biol. 11, 367 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanco, F. A. & Judelson, H. S. A bZIP transcription issue from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant an infection. Mol. Microbiol. 56, 638–648 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Judelson, H. S. & Ah-Fong, A. M. V. The kinome of Phytophthora infestans reveals oomycete-specific improvements and hyperlinks to different taxonomic teams. BMC Genom. 11, 700 (2010).

    Article 

    Google Scholar
     

  • Qiu, M. et al. Mining oomycete proteomes for phosphatome results in the identification of particular expanded phosphatases in oomycetes. Mol. Plant Pathol. 25, e13425 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kots, Okay., Meijer, H. J. G., Bouwmeester, Okay., Govers, F. & Ketelaar, T. Filamentous actin accumulates throughout plant cell penetration and cell wall plug formation in Phytophthora infestans. Cell. Mol. Life Sci. 74, 909–920 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Meijer, H. J., Hua, C., Kots, Okay., Ketelaar, T. & Govers, F. Actin dynamics in Phytophthora infestans; quickly reorganizing cables and motionless, long-lived plaques. Cell. Microbiol. 16, 948–961 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Bronkhorst, J. et al. An actin mechanostat ensures hyphal tip sharpness in Phytophthora infestans to realize host penetration. Sci. Adv. 8, eabo0875 (2022). This examine exhibits that an actin-based mechanostat allows environment friendly conversion of turgor into localized invasive stress that’s required for host penetration.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talbot, N. J. Appressoria. Curr. Biol. 29, R144–R146 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Osés-Ruiz, M. et al. Appressorium-mediated plant an infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional community. Nat. Microbiol. 6, 1383–1397 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Müller, T. et al. Plant an infection by the necrotrophic fungus Botrytis requires actin-dependent technology of excessive invasive turgor stress. N. Phytol. 244, 192–201 (2024).

    Article 

    Google Scholar
     

  • Bronkhorst, J. et al. A slicing mechanism facilitates host entry by plant-pathogenic Phytophthora. Nat. Microbiol. 6, 1000–1006 (2021). This examine exhibits that Phytophthora slices the floor underneath an angle to achieve entry into host tissue.

    Article 
    PubMed 

    Google Scholar
     

  • Evangelisti, E. & Govers, F. Roadmap to success: how oomycete plant pathogens invade tissues and ship effectors. Annu. Rev. Microbiol. 78, 493–512 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. Mol. Plant Pathol. 12, 187–201 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Koch, E. & Slusarenko, A. Arabidopsis is prone to an infection by a downy mildew fungus. Plant Cell 2, 437–445 (1990).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hardham, A. R. Cell biology of plant–oomycete interactions. Cell. Microbiol. 9, 31–39 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Holub, E. B. et al. Phenotypic and genotypic variation within the interplay between Arabidopsis thaliana and Albugo candida. Mol. Plant Microbe Interact. 8, 916–928 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Grenville-Briggs, L. J. et al. Identification of appressorial and mycelial cell wall proteins and a survey of the membrane proteome of Phytophthora infestans. Fungal Biol. 114, 702–723 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Resjö, S. et al. Proteomic evaluation of Phytophthora infestans reveals the significance of cell wall proteins in pathogenicity. Mol. Cell. Proteom. 16, 1958–1971 (2017).

    Article 

    Google Scholar
     

  • Lévesque, C. A. et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals unique pathogenicity mechanisms and effector repertoire. Genome Biol. 11, R73 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brouwer, H., Coutinho, P. M., Henrissat, B. & de Vries, R. P. Carbohydrate-related enzymes of essential Phytophthora plant pathogens. Fungal Genet. Biol. 72, 192–200 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sabbadin, F. et al. Secreted pectin monooxygenases drive plant an infection by pathogenic oomycetes. Science 373, 774–779 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum illness resistance. Mol. Plant 17, 1344–1368 (2024). This examine exhibits that AlphaFold-assisted design of a pectin methylesterase inhibitor will increase plant resistance with out inflicting development penalty.

    Article 
    PubMed 

    Google Scholar
     

  • Ma, Z. et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a number inhibitor. Science 355, 710–714 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, Z. et al. A Phytophthora sojae glycoside hydrolase 12 protein is a serious virulence issue throughout soybean an infection and is acknowledged as a PAMP. Plant Cell 27, 2057–2072 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. et al. Plant receptor-like protein activation by a microbial glycoside hydrolase. Nature 610, 335–342 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Han, G.-Z. Origin and evolution of the plant immune system. N. Phytol. 222, 70–83 (2019).

    Article 

    Google Scholar
     

  • Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species range by pathogens. Annu. Rev. Ecol. Evol. Syst. 46, 305–325 (2015).

    Article 

    Google Scholar
     

  • Lenarčič, T. et al. Eudicot plant-specific sphingolipids decide host selectivity of microbial NLP cytolysins. Science 358, 1431–1434 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Tomczynska, I., Stumpe, M., Doan, T. G. & Mauch, F. A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by bodily interplay with plasmodesmata-localised callose synthases. N. Phytol. 227, 1467–1478 (2020).

    Article 

    Google Scholar
     

  • Zhu, X. et al. Phytophthora sojae boosts host trehalose accumulation to amass carbon and provoke an infection. Nat. Microbiol. 8, 1561–1573 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is acknowledged as a MAMP. Plant Physiol. 187, 321–335 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pei, Y. et al. A receptor kinase senses sterol by coupling with elicitins in auxotrophic Phytophthora. Proc. Natl Acad. Sci. USA 121, e2408186121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. et al. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nat. Commun. 8, 2051 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. A Phytophthora effector recruits a number cytoplasmic transacetylase into nuclear speckles to boost plant susceptibility. eLife 7, e40039 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, L. et al. A Phytophthora effector manipulates host histone acetylation and reprograms protection gene expression to advertise an infection. Curr. Biol. 27, 981–991 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Harvey, S. et al. Downy mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to advertise pathogen susceptibility. PLoS Pathog. 16, e1008835 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. A conserved Phytophthora apoplastic trypsin-like serine protease targets the receptor-like kinase BAK1 to dampen plant immunity. Nat. Plants 11, 1401–1415 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • King, S. R. F. et al. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKε to suppress plant immune signaling. Plant Cell 26, 1345–1359 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Unconventionally secreted effectors of two filamentous pathogens goal plant salicylate biosynthesis. Nat. Commun. 5, 4686 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Liang, X. et al. A Phytophthora capsici RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. N. Phytol. 232, 264–278 (2021).

    Article 

    Google Scholar
     

  • Yuen, E. L. H., Shepherd, S. & Bozkurt, T. O. Traffic management: subversion of plant membrane trafficking by pathogens. Annu. Rev. Phytopathol. 61, 325–350 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Qiao, Y., Shi, J., Zhai, Y., Hou, Y. & Ma, W. Phytophthora effector targets a novel element of small RNA pathway in vegetation to advertise an infection. Proc. Natl Acad. Sci. USA 112, 5850–5855 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao, Y. et al. Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 45, 330–333 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, S. et al. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity. PLoS Pathog. 7, e1002353 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Tyler, B. M. & Wang, Y. Defense and counterdefense throughout plant-pathogenic oomycete an infection. Annu. Rev. Microbiol. 73, 667–696 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Functionally redundant RXLR effectors from Phytophthora infestans act at completely different steps to suppress early flg22-triggered immunity. PLoS Pathog. 10, e1004057 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, R. H. Y., Tripathy, S., Govers, F. & Tyler, B. M. RXLR effector reservoir in two Phytophthora species is dominated by a single quickly evolving superfamily with greater than 700 members. Proc. Natl Acad. Sci. USA 105, 4874–4879 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Win, J. et al. Sequence divergent RXLR effectors share a structural fold conserved throughout plant pathogenic oomycete species. PLoS Pathog. 8, e1002400 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ai, G. et al. Prediction and characterization of RXLR effectors in Pythium species. Mol. Plant Microbe Interact. 33, 1046–1058 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Links, M. G. et al. De novo sequence meeting of Albugo candida reveals a small genome relative to different biotrophic oomycetes. BMC Genom. 12, 503 (2011).

    Article 

    Google Scholar
     

  • Zhang, D., Burroughs, A. M., Vidal, N. D., Iyer, L. M. & Aravind, L. Transposons to toxins: the provenance, structure and diversification of a widespread class of eukaryotic effectors. Nucleic Acids Res. 44, 3513–3533 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schornack, S. et al. Ancient class of translocated oomycete effectors targets the host nucleus. Proc. Natl Acad. Sci. USA 107, 17421–17426 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ai, G. et al. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling. PLoS Pathog. 17, e1009388 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. et al. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell demise through interactions with plant catalases. Plant Physiol. 167, 164–175 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, T. et al. An oomycete CRN effector reprograms expression of plant HSP genes by focusing on their promoters. PLoS Pathog. 11, e1005348 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stam, R., Motion, G. B., Martinez-Heredia, V., Boevink, P. C. & Huitema, E. A conserved oomycete CRN effector targets tomato TCP14-2 to boost virulence. Mol. Plant Microbe Interact. 34, 309–318 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. M. et al. The Phytophthora infestans haustorium is a web site for secretion of numerous courses of infection-associated proteins. mBio 9, e01216–e01218 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis. Plant Cell 35, 2504–2526 (2023). This examine investigates the mechanism by which oomycete RxLR effectors are transported into plant cells.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, L. et al. Proteolytic processing of each RXLR and EER motifs in oomycete effectors. N. Phytol. 245, 1640–1654 (2025).

    Article 

    Google Scholar
     

  • Wawra, S. et al. The RxLR motif of the host focusing on effector AVR3a of Phytophthora infestans is cleaved earlier than secretion. Plant Cell 29, 1184–1195 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. The RXLR-EER motif determines an unconventional secretion pathway related to extracellular vesicle manufacturing. Preprint at bioRxiv (2025).

  • Jung, T. et al. Canker and decline ailments attributable to soil- and airborne Phytophthora species in forests and woodlands. Persoonia 40, 182–220 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamichhane, J. R. et al. Thirteen a long time of antimicrobial copper compounds utilized in agriculture. A evaluation. Agron. Sustain. Dev. 38, 28 (2018).

    Article 

    Google Scholar
     

  • Gisi, U. & Sierotzki, H. in Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management (eds Hideo, I. & Derek, W. H.) 145–174 (Springer, 2015).

  • Abuley, I. Okay., Lynott, J. S., Hansen, J. G., Cooke, D. E. L. & Lees, A. Okay. The EU43 genotype of Phytophthora infestans shows resistance to mandipropamid. Plant Pathol. 72, 1305–1313 (2023).

    Article 

    Google Scholar
     

  • Avila-Quezada, G. D. & Rai, M. Novel nanotechnological approaches for managing Phytophthora ailments of vegetation. Trends Plant Sci. 28, 1070–1080 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Berendsen, R. L. et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 12, 1496–1507 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goossens, P. et al. Obligate biotroph downy mildew persistently induces near-identical protecting microbiomes in Arabidopsis thaliana. Nat. Microbiol. 8, 2349–2364 (2023). This examine exhibits that each roots and shoots of downy mildew-infected vegetation selectively recruit related microbiota that assist in resisting soil-borne pathogens.

    Article 
    PubMed 

    Google Scholar
     

  • Paris, F. et al. Hydrophobized laminarans as new biocompatible anti-oomycete compounds for grapevine safety. Carbohydr. Polym. 225, 115224 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Antifungal exercise of chitosan in opposition to Phytophthora infestans, the pathogen of potato late blight. Int. J. Biol. Macromol. 166, 1365–1376 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fundora, D. G.-P. et al. Chitosan induces tomato basal resistance in opposition to Phytophthora nicotianae and inhibits pathogen improvement. Can. J. Plant Pathol. 44, 400–414 (2022).

    Article 

    Google Scholar
     

  • Wang, X. et al. Field utility of star polymer-delivered chitosan to amplify plant protection in opposition to potato late blight. Chem. Eng. J. 417, 129327 (2021).

    Article 

    Google Scholar
     

  • Peng, J. et al. Advances in understanding grapevine downy mildew: from pathogen an infection to illness administration. Mol. Plant Pathol. 25, e13401 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Targeting of anti-microbial proteins to the hyphal floor amplifies safety of crop vegetation in opposition to Phytophthora pathogens. Mol. Plant 14, 1391–1403 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jahan, S. N. et al. Plant-mediated gene silencing restricts development of the potato late blight pathogen Phytophthora infestans. J. Exp. Bot. 66, 2785–2794 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Govindarajulu, M., Epstein, L., Wroblewski, T. & Michelmore, R. W. Host-induced gene silencing inhibits the biotrophic pathogen inflicting downy mildew of lettuce. Plant Biotechnol. J. 13, 875–883 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. High-efficiency inexperienced administration of potato late blight by a self-assembled multicomponent nano-bioprotectant. Nat. Commun. 14, 5622 (2023). This examine demonstrates {that a} nano-bioprotectant integrating dsRNA and an elicitor successfully controls potato late blight within the area.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiao, L. et al. Spray-induced gene silencing for illness management relies on the effectivity of pathogen RNA uptake. Plant Biotechnol. J. 19, 1756–1768 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, X. et al. Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat. Genet. 55, 1579–1588 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Natl Acad. Sci. USA 100, 9128–9133 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S., Li, Y., Vossen, J. H., Visser, R. G. & Jacobsen, E. Functional stacking of three resistance genes in opposition to Phytophthora infestans in potato. Transgenic Res. 21, 89–99 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ghislain, M. et al. Stacking three late blight resistance genes from wild species straight into African highland potato varieties confers full area resistance to native blight races. Plant Biotechnol. J. 17, 1119–1129 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Leucine-rich repeat receptor-like gene display screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9, 594 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, J. et al. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1, 15034 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Torres Ascurra, Y. C. et al. Functional diversification of a wild potato immune receptor at its middle of origin. Science 381, 891–897 (2023). This examine demonstrates that the evolution of the sample recognition receptor PERU in wild potato populations results in variations in ligand binding specificity.

    Article 
    PubMed 

    Google Scholar
     

  • Torres Ascurra, Y. C., Wouters, D., Visser, R. G. F., Nürnberger, T. & Vleeshouwers, V. G. A. A. Stacking of PRRs in potato to realize enhanced resistance in opposition to Phytophthora infestans. Preprint at bioRxiv (2023).

  • Pruitt, R. N. et al. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495–499 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giacomelli, L. et al. Simultaneous modifying of two DMR6 genes in grapevine ends in lowered susceptibility to downy mildew. Front. Plant Sci. 14, 1242240 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Toledo Thomazella, D. P. et al. Loss of operate of a DMR6 ortholog in tomato confers broad-spectrum illness resistance. Proc. Natl Acad. Sci. USA 118, e2026152118 (2021).

    Article 

    Google Scholar
     

  • van Damme, M., Huibers, R. P., Elberse, J. & Van den Ackerveken, G. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that’s defense-associated however required for susceptibility to downy mildew. Plant J. 54, 785–793 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zeilmaker, T. et al. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant however distinct suppressors of immunity in Arabidopsis. Plant J. 81, 210–222 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Karlsson, M. et al. CRISPR/Cas9 genome modifying of potato StDMR6-1 ends in vegetation much less affected by completely different stress circumstances. Hortic. Res. 11, uhae130 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavrin, A. et al. Developmental modulation of root cell wall structure confers resistance to an oomycete pathogen. Curr. Biol. 30, 4165–4176.e5 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, E. et al. A standard signaling course of that promotes mycorrhizal and oomycete colonization of vegetation. Curr. Biol. 22, 2242–2246 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • He, Q. et al. Plant pathogen effector makes use of host susceptibility issue NRL1 to degrade the immune regulator SWAP70. Proc. Natl Acad. Sci. USA 115, E7834–E7843 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. CRISPR/Cas9-mediated modifying of GmTAP1 confers enhanced resistance to Phytophthora sojae in soybean. J. Integr. Plant Biol. 65, 1609–1612 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A. & Kamoun, S. NLR immune receptor–nanobody fusions confer plant illness resistance. Science 379, 934–939 (2023). This examine describes a novel technique for plant immune receptor engineering by integrating a nanobody area.

    Article 
    PubMed 

    Google Scholar
     

  • Hardham, A. R., Takemoto, D. & White, R. G. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete assault. BMC Plant Biol. 8, 63 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage, Z. et al. Chloroplasts alter their morphology and accumulate on the pathogen interface throughout an infection by Phytophthora infestans. Plant J. 107, 1771–1787 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Brunner, F. et al. Pep-13, a plant defense-inducing pathogen-associated sample from Phytophthora transglutaminases. EMBO J. 21, 6681–6688 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato, H. et al. Recognition of pathogen-derived sphingolipids in Arabidopsis. Science 376, 857–860 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Convergent evolution of immune receptors underpins distinct elicitin recognition in carefully associated Solanaceous vegetation. Plant Cell 35, 1186–1201 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, F. et al. Activation of the helper NRC4 immune receptor varieties a hexameric resistosome. Cell 187, 4877–4889.e15 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C.-H. et al. NLR community mediates immunity to numerous plant pathogens. Proc. Natl Acad. Sci. USA 114, 8113–8118 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, S. et al. Direct pathogen-induced meeting of an NLR immune receptor advanced to type a holoenzyme. Science 370, eabe3069 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rehmany, A. P. et al. Differential recognition of extremely divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis traces. Plant Cell 17, 1839–1850 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S. et al. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science 377, eabq3297 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jia, A. et al. TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science 377, eabq8180 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, B. Okay. et al. Climate change impacts on plant pathogens, meals safety and paths ahead. Nat. Rev. Microbiol. 21, 640–656 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. High ranges of range and inhabitants construction within the potato late blight pathogen on the Mexico centre of origin. Mol. Ecol. 26, 1091–1107 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Guha Roy, S., Dey, T., Cooke, D. E. L. & Cooke, L. R. The dynamics of Phytophthora infestans populations within the main potato-growing areas of Asia — a evaluation. Plant Pathol. 70, 1015–1031 (2021).

    Article 

    Google Scholar
     

  • Yang, L.-N., Ren, M. & Zhan, J. Modeling plant ailments underneath local weather change: evolutionary views. Trends Plant Sci. 28, 519–526 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, E.-J. et al. Rapid adaptation of the Irish Potato Famine pathogen Phytophthora infestans to altering temperature. Evol. Appl. 13, 768–780 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Saville, A. C., McGrath, M. T., Jones, C., Polo, J. & Ristaino, J. B. Understanding the genotypic and phenotypic construction and influence of local weather on Phytophthora nicotianae outbreaks on potato and tomato within the jap United States. Phytopathology 113, 1506–1514 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Puig, A. S. et al. The differential affect of temperature on Phytophthora megakarya and Phytophthora palmivora pod lesion growth, mycelia development, gene expression, and metabolite profiles. Physiol. Mol. Plant Pathol. 102, 95–112 (2018).

    Article 

    Google Scholar
     

  • Hua, J. & Dong, X. Sustaining plant immunity in rising temperature. Cell Res. 32, 1038–1039 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trivedi, P., Batista, B. D., Bazany, Okay. E. & Singh, B. Okay. Plant–microbiome interactions underneath a altering world: responses, penalties and views. N. Phytol. 234, 1951–1959 (2022).

    Article 

    Google Scholar
     

  • Raffaele, S. & Kamoun, S. Genome evolution in filamentous plant pathogens: why larger might be higher. Nat. Rev. Micro 10, 417–430 (2012).

    Article 

    Google Scholar
     

  • Huang, J. et al. Natural allelic variations present insights into host adaptation of Phytophthora avirulence effector PsAvr3c. N. Phytol. 221, 1010–1022 (2018).

    Article 

    Google Scholar
     

  • Asai, S. et al. A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nat. Commun. 9, 5192 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Res. 48, 1790–1799 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Qutob, D., Chapman, B. P. & Gijzen, M. Transgenerational gene silencing causes acquire of virulence in a plant pathogen. Nat. Commun. 4, 1349 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Qutob, D. et al. Copy quantity variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a. PLoS ONE 4, e5066 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou, D. et al. Different domains of Phytophthora sojae effector Avr4/6 are acknowledged by soybean resistance genes Rps4 and Rps6. Mol. Plant Microbe Interact. 23, 425–435 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Transcriptional programming and purposeful interactions inside the Phytophthora sojae RXLR effector repertoire. Plant Cell 23, 2064–2086 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dale, A. L. et al. Mitotic recombination and speedy genome evolution within the invasive forest pathogen Phytophthora ramorum. mBio 10, e02452-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41579-025-01248-w
    and if you wish to take away this text from our web site please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *