Constructing moist planets by way of high-pressure magma–hydrogen reactions

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09630-7
and if you wish to take away this text from our website please contact us


  • Fulton, B. J. et al. The California-Kepler survey. III. A spot within the radius distribution of small planets. Astron. J. 154, 109 (2017).

    ADS 

    Google Scholar
     

  • Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune measurement planets. J. Geophys. Res. Planets 126, e2020JE006639 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bitsch, B. et al. Dry or water world? How the water contents of internal sub-Neptunes constrain large planet formation and the placement of the water ice line. Astron. Astrophys. 649, L5 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Misener, W., Schlichting, H. E. & Young, E. D. Atmospheres as home windows into sub-Neptune interiors: coupled chemistry and construction of hydrogen–silane–water envelopes. Mon. Not. R. Astron. Soc. 524, 981–992 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Schlichting, H. E. & Young, E. D. Chemical equilibrium between cores, mantles, and atmospheres of super-Earths and sub-Neptunes and implications for his or her compositions, interiors, and evolution. Planet. Sci. J. 3, 127 (2022).


    Google Scholar
     

  • Morbidelli, A. et al. Source areas and timescales for the supply of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Ikoma, M. & Genda, H. Constraints on the mass of a liveable planet with water of nebular origin. Astrophys. J. 648, 696 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Young, E. D., Shahar, A. & Schlichting, H. E. Earth formed by primordial H2 atmospheres. Nature 616, 306–311 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, A. W. et al. Planet incidence inside 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012).

    ADS 

    Google Scholar
     

  • Owen, J. E. & Wu, Y. Kepler planets: a story of evaporation. Astrophys. J. 775, 105 (2013).

    ADS 

    Google Scholar
     

  • Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Zeng, L. et al. Growth mannequin interpretation of planet measurement distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venturini, J. & Helled, R. Jupiter’s heavy-element enrichment anticipated from formation fashions. Astron. Astrophys. 634, A31 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Piaulet, C. et al. Evidence for the volatile-rich composition of a 1.5-Earth-radius planet. Nat. Astron. 7, 206–222 (2022).

    ADS 

    Google Scholar
     

  • Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “Steam World” environment of GJ 9827 d. Astrophys. J. Lett. 974, L10 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and penalties for unstable evolution of terrestrial planets. Earth Planet. Sci. Lett. 345, 38–48 (2012).

    ADS 

    Google Scholar
     

  • Kite, E. S., Fegley, B. Jr, Schaefer, L. & Ford, E. B. Superabundance of exoplanet sub-neptunes defined by fugacity disaster. Astrophys. J. Lett. 887, L33 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Sabat, Okay. C., Rajput, P., Paramguru, R. Okay., Bhoi, B. & Mishra, B. Okay. Reduction of oxide minerals by hydrogen plasma: an summary. Plasma Chem. Plasma Process. 34, 1–23 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Kimura, T. & Ikoma, M. Predicted range in water content material of terrestrial exoplanets orbiting M dwarfs. Nat. Astron. 6, 1296–1307 (2022).

    ADS 

    Google Scholar
     

  • Krissansen-Totton, J., Wogan, N., Thompson, M. & Fortney, J. J. The erosion of enormous major atmospheres usually leaves behind substantial secondary atmospheres on temperate rocky planets. Nat. Commun. 15, 8374 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horn, H. W., Prakapenka, V., Chariton, S., Speziale, S. & Shim, S.-H. Reaction between hydrogen and ferrous/ferric oxides at excessive pressures and excessive temperatures—implications for sub-neptunes and super-earths. Planet. Sci. J. 4, 30 (2023).

    CAS 

    Google Scholar
     

  • Kim, T. et al. Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres. Proc. Natl Acad. Sci. USA 120, e2309786120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinozaki, A. et al. Influence of H2 fluid on the soundness and dissolution of Mg2SiO4 forsterite beneath excessive strain and excessive temperature. Am. Mineral. 98, 1604–1609 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Shinozaki, A. et al. Formation of SiH4 and H2O by the dissolution of quartz in H2 fluid beneath excessive strain and temperature. Am. Mineral. 99, 1265–1269 (2014).

    ADS 

    Google Scholar
     

  • Stökl, A., Dorfi, E. A., Johnstone, C. P. & Lammer, H. Dynamical accretion of primordial atmospheres round planets with lots between 0.1 and 5 M within the liveable zone. Astrophys. J. 825, 86 (2016).

    ADS 

    Google Scholar
     

  • Vazan, A., Ormel, C. W., Noack, L. & Dominik, C. Contribution of the core to the thermal evolution of sub-Neptunes. Astrophys. J. 869, 163 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Goncharov, A. F. et al. X-ray diffraction within the pulsed laser heated diamond anvil cell. Rev. Sci. Instrum. 81, 113902 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Shen, G. & Lazor, P. Measurement of melting temperatures of some minerals beneath decrease mantle pressures. J. Geophys. Res. Solid Earth 100, 17699–17713 (1995).

    CAS 

    Google Scholar
     

  • Gupta, A., Stixrude, L. & Schlichting, H. E. The miscibility of hydrogen and water in planetary atmospheres and interiors. Astrophys. J. Lett. 982, L35 (2025).

    ADS 
    CAS 

    Google Scholar
     

  • Kim, T. et al. Atomic-scale mixing between MgO and H2O within the deep interiors of water-rich planets. Nat. Astron. 5, 815–821 (2021).

    ADS 

    Google Scholar
     

  • Hirschmann, M. M., Aubaud, C. & Withers, A. C. Storage capability of H2O in nominally anhydrous minerals within the higher mantle. Earth Planet. Sci. Lett. 236, 167–181 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Karki, B. B., Ghosh, D. B. & Bajgain, S. Okay. in Magmas Under Pressure 419–453 (Elsevier, 2018).

  • Putirka, Okay. D. & Xu, S. Polluted white dwarfs reveal unique mantle rock varieties on exoplanets in our photo voltaic neighborhood. Nat. Commun. 12, 6168 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguichine, A., Mousis, O., Deleuil, M. & Marcq, E. Mass–radius relationships for irradiated ocean planets. Astrophys. J. 914, 84 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Vazan, A., Sari, R. & Kessel, R. A brand new perspective on the interiors of ice-rich planets: ice-rock combination as a substitute of ice on prime of rock. Astrophys. J. 926, 150 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Luo, H., Dorn, C. & Deng, J. The inside because the dominant water reservoir in super-Earths and sub-Neptunes. Nat. Astron. 8, 1399–1407 (2024).

    ADS 

    Google Scholar
     

  • Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley: hints from formation and evolution fashions. Astron. Astrophys. 643, L1 (2020).

    ADS 

    Google Scholar
     

  • Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madhusudhan, N., Piette, A. A. A. & Constantinou, S. Habitability and biosignatures of hycean worlds. Astrophys. J. 918, 1 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Cherubim, C. et al. TOI-1695 b: a water world orbiting an early-M dwarf within the planet radius valley. Astron. J. 165, 167 (2023).

    ADS 

    Google Scholar
     

  • Osborne, H. L. M. et al. TOI-544 b: a possible water-world contained in the radius valley in a two-planet system. Mon. Not. R. Astron. Soc. 527, 11138–11157 (2023).

    ADS 

    Google Scholar
     

  • Izidoro, A. et al. The exoplanet radius valley from gas-driven planet migration and breaking of resonant chains. Astrophys. J. Lett. 939, L19 (2022).

    ADS 

    Google Scholar
     

  • Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. Calibration of the strain dependence of the R1 ruby fluorescence line to 195 kbar. J. Appl. Phys. 46, 2774–2780 (1975).

    ADS 
    CAS 

    Google Scholar
     

  • Prakapenka, V. et al. Advanced flat prime laser heating system for prime strain analysis at GSECARS: software to the melting conduct of germanium. High Press. Res. 28, 225–235 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Deemyad, S. et al. Pulsed laser heating and temperature dedication in a diamond anvil cell. Rev. Sci. Instrum. 76, 125104 (2005).

    ADS 

    Google Scholar
     

  • Fu, S., Chariton, S., Prakapenka, V. B., Chizmeshya, A. & Shim, S.-H. Stable hexagonal ternary alloy part in Fe-Si-H at 28.6–42.2 GPa and 3000 Okay. Phys. Rev. B 105, 104111 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Fu, S., Chariton, S., Prakapenka, V. B. & Shim, S.-H. Core origin of seismic velocity anomalies at Earth’s core–mantle boundary. Nature 615, 646–651 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulka, B. L., Dolinschi, J. D., Leinenweber, Okay. D., Prakapenka, V. B. & Shim, S.-H. The bridgmanite–akimotoite–majorite triple level decided in massive quantity press and laser-heated diamond anvil cell. Minerals 10, 67 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for discount of two-dimensional X-ray diffraction information and information exploration. High Press. Res. 35, 223–230 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Shim, S.-H. PeakPo: a python software program for x-ray diffraction evaluation at excessive strain and excessive temperature. Zenodo (2019).

  • Ye, Y., Prakapenka, V., Meng, Y. & Shim, S.-H. Intercomparison of the gold, platinum, and MgO strain scales as much as 140 GPa and 2500 Okay. J. Geophys. Res. Solid Earth 122, 3450–3464 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Dewaele, A., Fiquet, G. & Gillet, P. Temperature and strain distribution within the laser-heated diamond–anvil cell. Rev. Sci. Instrum. 69, 2421–2426 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V. B. & Goncharov, A. F. Advanced built-in optical spectroscopy system for diamond anvil cell research at GSECARS. High Press. Res. 39, 457–470 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Vazan, A., Helled, R., Kovetz, A. & Podolak, M. Convection and mixing in large planet evolution. Astrophys. J. 803, 32 (2015).

    ADS 

    Google Scholar
     

  • Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and large planets. Astrophys. J. Suppl. Ser. 99, 713 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Vazan, A., Kovetz, A., Podolak, M. & Helled, R. The impact of composition on the evolution of large and intermediate-mass planets. Mon. Not. R. Astron. Soc. 434, 3283–3292 (2013).

    ADS 

    Google Scholar
     

  • Freedman, R. S. et al. Gaseous imply opacities for big planet and ultracool dwarf atmospheres over a variety of metallicities and temperatures. Astrophys. J. Suppl. Ser. 214, 25 (2014).

    ADS 

    Google Scholar
     

  • Shim, S.-H. Experimental information for hydrogen-silicate response [Data set]. Zenodo (2025).

  • Shim, S.-H. Jupyter notebooks for Supplementary Codes (0.0.1). Zenodo (2025).

  • Sakamaki, Okay. et al. Melting part relation of FeHx as much as 20 GPa: implication for the temperature of the Earth’s core. Phys. Earth Planet. Interiors 174, 192–201 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Mosenfelder, J. L., Asimow, P. D. & Ahrens, T. J. Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. J. Geophys. Res. Solid Earth 112, B06208 (2007).

    ADS 

    Google Scholar
     

  • Ohtani, E. Melting relation of Fe2SiO4 as much as about 200 kbar. J. Phys. Earth 27, 189–208 (1979).

    CAS 

    Google Scholar
     

  • Andrault, D. et al. Melting conduct of SiO2 as much as 120 GPa. Phys. Chem. Miner. 47, 10 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Zha, C., Liu, H., Tse, J. S. & Hemley, R. J. Melting and excessive PT transitions of hydrogen as much as 300 GPa. Phys. Rev. Lett. 119, 075302 (2017).

    PubMed 

    Google Scholar
     

  • Narygina, O. et al. X-ray diffraction and Mössbauer spectroscopy research of fcc iron hydride FeH at excessive pressures and implications for the composition of the Earth’s core. Earth Planet. Sci. Lett. 307, 409–414 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Thompson, E. et al. High-pressure geophysical properties of fcc part FeHX. Geochem. Geophys. Geosyst. 19, 305–314 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Kato, C. et al. Stability of fcc part FeH to 137 GPa. Am. Mineral. 105, 917–921 (2020).

    ADS 

    Google Scholar
     

  • Tagawa, S., Gomi, H., Hirose, Okay. & Ohishi, Y. High-temperature equation of state of FeH: implications for hydrogen in Earth’s internal core. Geophys. Res. Lett. 49, e2021GL096260 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Ikuta, D. et al. Interstitial hydrogen atoms in face-centered cubic iron within the Earth’s core. Sci. Rep. 9, 7108 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shibazaki, Y. et al. High-pressure and high-temperature part diagram for Fe0.9Ni0.1–H alloy. Phys. Earth Planet. Inter. 228, 192–201 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Ohta, Okay., Suehiro, S., Hirose, Okay. & Ohishi, Y. Electrical resistivity of fcc part iron hydrides at excessive pressures and temperatures. Comptes Rendus Geosci. 351, 147–153 (2019).

    ADS 

    Google Scholar
     

  • Dorogokupets, P. I., Dymshits, A. M., Litasov, Okay. D. & Sokolova, T. S. Thermodynamics and equations of state of iron to 350 GPa and 6000 Okay. Sci. Rep. 7, 41863 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piet, H. et al. Superstoichiometric alloying of H and close-packed Fe-Ni metallic beneath excessive pressures: implications for hydrogen storage in planetary core. Geophys. Res. Lett. 50, e2022GL101155 (2023).

    ADS 
    CAS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09630-7
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *