Viral epidemic potential will not be uniformly distributed throughout the bat phylogeny

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s42003-025-08929-5
and if you wish to take away this text from our web site please contact us


  • Jones, Okay. E. et al. Global developments in rising infectious ailments. Nature 451, 990–993 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, L. H., Latham, S. M. & Woolhouse, M. E. Risk components for human illness emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 983–989 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rathnayaka, I. W., Khanam, R. & Rahman, M. M. The economics of COVID-19: a scientific literature evaluate. J. Econ. Stud. 50, 49–72 (2023).


    Google Scholar
     

  • Becker, D. J. et al. Optimising predictive fashions to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe 3, e625–e637 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guth, S., Visher, E., Boots, M. & Brook, C. E. Host phylogenetic distance drives developments in virus virulence and transmissibility throughout the animal-human interface. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190296 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic ailments. Proc. Natl Acad. Sci. Usa. 112, 7039–7044 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, D. J. & Han, B. A. The macroecology and evolution of avian competence for Borrelia burgdorferi. Glob. Ecol. Biogeogr. 30, 710–724 (2021).


    Google Scholar
     

  • Guth, S. et al. Bats host essentially the most virulent-but not essentially the most dangerous-zoonotic viruses. Proc. Natl Acad. Sci. Usa. 119, e2113628119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plowright, R. Okay. et al. Prioritizing surveillance of Nipah virus in India. PLoS Negl. Trop. Dis. 13, e0007393 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. MERS-CoV spillover on the camel-human interface. Elife 7, e31257 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irving, A. T., Ahn, M., Goh, G., Anderson, D. E. & Wang, L.-F. Lessons from the host defences of bats, a novel viral reservoir. Nature 589, 363–370 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Olival, Okay. J., Weekley, C. C. & Daszak, P. Are bats actually ‘special’ as viral reservoirs? What we all know and must know. in Bats and Viruses 281–294 (Wiley, 2015).

  • Wang, L.-F., Walker, P. J. & Poon, L. L. M. Mass extinctions, biodiversity and mitochondrial perform: are bats ‘special’ as reservoirs for rising viruses? Curr. Opin. Virol. 1, 649–657 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mollentze, N. & Streicker, D. G. Viral zoonotic danger is homogenous amongst taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. USA 117, 9423–9430 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farrell, M. J. & Davies, T. J. Disease mortality in domesticated animals is predicted by host evolutionary relationships. Proc. Natl. Acad. Sci. USA 116, 7911–7915 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, V. & Banerjee, A. Molecular, ecological, and behavioral drivers of the bat-virus relationship. iScience 25, 104779 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simmons, N. B. & Cirranello, A. L. Bat Species of The World: A Taxonomic and Geographic Database, Version 1.9. (2025).

  • Becker, D. J. et al. Diverse hosts, numerous immune methods: evolutionary variation in bat immunology. Ann. N. Y. Acad. Sci. (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem companies offered by bats: Ecosystem companies offered by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).

    PubMed 

    Google Scholar
     

  • Bats within the Anthropocene: Conservation of Bats in a Changing World. (Springer, 2015).

  • Fenton, M. B., Mubareka, S., Tsang, S. M., Simmons, N. B. & Becker, D. J. COVID-19 and threats to bats. Facets 5, 349–352 (2020).


    Google Scholar
     

  • O’Shea, T. J., Cryan, P. M., Hayman, D. T. S., Plowright, R. Okay. & Streicker, D. G. Multiple mortality occasions in bats: a worldwide evaluate. Mamm. Rev. 46, 175–190 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viana, M. et al. Effects of culling vampire bats on the spatial unfold and spillover of rabies virus. Sci. Adv. 9, eadd7437 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amman, B. R. et al. Marburgvirus resurgence in Kitaka Mine bat inhabitants after extermination makes an attempt, Uganda. Emerg. Infect. Dis. 20, 1761–1764 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Washburne, A. D. et al. Phylofactorization: a graph partitioning algorithm to determine phylogenetic scales of ecological knowledge. Ecol. Monogr. 89, e01353 (2019).


    Google Scholar
     

  • Carlson, C. J. et al. The international virome in a single community (VIRION): an atlas of vertebrate-virus associations. MBio 13, e0298521 (2022).

    PubMed 

    Google Scholar
     

  • Paradis, E., Claude, J. & Strimmer, Okay. A. P. E. Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level units of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leland, D. S. & Ginocchio, C. C. Role of cell tradition for virus detection within the age of know-how. Clin. Microbiol. Rev. 20, 49–78 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, A. T. et al. Deciphering serology to know the ecology of infectious ailments in wildlife. Ecohealth 10, 298–313 (2013).

    PubMed 

    Google Scholar
     

  • Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond an infection: integrating competence into reservoir host prediction. Trends Ecol. Evol. 35, 1062–1065 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orme, D. The caper package deal: comparative evaluation of phylogenetics and evolution in R. (2013).

  • Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic evaluation and comparative knowledge: a check and evaluate of proof. Am. Nat. 160, 712–726 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Pagel, M. Inferring the historic patterns of organic evolution. Nature 401, 877–884 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Münkemüller, T. et al. How to measure and check phylogenetic sign. Methods Ecol. Evol. 3, 743–756.

  • Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic sign in comparative knowledge: behavioral traits are extra labile. Evolution 57, 717–745 (2003).

    PubMed 

    Google Scholar
     

  • Holm, S. A easy sequentially rejective a number of check process. Scand. J. Stat. 6, 65–70 (1979).


    Google Scholar
     

  • Gibb, R. et al. Mammal virus variety estimates are unstable because of accelerating discovery effort. Biol. Lett. 18, 20210427 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albery, G. F. et al. Urban-adapted mammal species have extra recognized pathogens. Nat. Ecol. Evol. 6, 794–801 (2022).

    PubMed 

    Google Scholar
     

  • Laubach, Z. M., Murray, E. J., Hoke, Okay. L., Safran, R. J. & Perng, W. A biologist’s information to mannequin choice and causal inference. Proc. Biol. Sci. 288, 20202815 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • IUCN. The IUCN Red List of Threatened Species. (IUCN, 2023).

  • Plowright, R. Okay. et al. Land use-induced spillover: a name to motion to safeguard environmental, animal, and human well being. Lancet Planet. Health 5, e237–e245 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson, C. J. et al. Pathogens and planetary change. Nat. Rev. Biodivers. 1, 32–49 (2025).


    Google Scholar
     

  • Bivariate Maps: ‘bivariate.map’ Function. https://rfunctions.blogspot.com/2015/03/bivariate-maps-bivariatemap-function.html.

  • Venter, O. et al. Last of the wild undertaking, model 3 (LWP-3). 1993 human footprint, 2018 launch. Palisades, NY. NASA Socioeconomic Data and Applications Center (SEDAC) (2018).

  • ADW: Home. https://animaldiversity.org/.

  • Allen, T. et al. Global hotspots and correlates of rising zoonotic ailments. Nat. Commun. 8, 1124 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olival, Okay. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alkhovsky, S. et al. SARS-like Coronaviruses in Horseshoe Bats (Rhinolophus spp.) in Russia, 2020. Viruses 14, 113 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Novel SARS-like betacoronaviruses in bats, China, 2011. Emerg. Infect. Dis. 19, 989–991 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serra-Cobo, J., Amengual, B., Abellán, C. & Bourhy, H. European bat lyssavirus an infection in Spanish bat populations. Emerg. Infect. Dis. 8, 413–420 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, G. R., Lee, Y. T. & Park, C. H. A brand new pure reservoir of hantavirus: isolation of hantaviruses from lung tissues of bats. Arch. Virol. 134, 85–95 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L.-F., Gamage, A. M., Chan, W. O. Y., Hiller, M. & Teeling, E. C. Decoding bat immunity: the necessity for a coordinated analysis strategy. Nat. Rev. Immunol. 21, 269–271 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schountz, T., Baker, M. L., Butler, J. & Munster, V. Immunological management of viral infections in bats and the emergence of viruses extremely pathogenic to people. Front. Immunol. 8, 1098 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forero-Muñoz, N. R. et al. The coevolutionary mosaic of bat betacoronavirus emergence danger. Virus Evol. 10, vead079 (2024).

    PubMed 

    Google Scholar
     

  • Banerjee, A. et al. Novel insights into immune methods of bats. Front. Immunol. 11, 26 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luis, A. D. et al. A comparability of bats and rodents as reservoirs of zoonotic viruses: are bats particular? Proc. Biol. Sci. 280, 20122753 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobson, A. P. Virology. What hyperlinks bats to rising infectious ailments? Science 310, 628–629 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, P. D. C. et al. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front. Immunol. 14, 1239572 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, S. et al. Bat coronaviruses and experimental an infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Streicker, D. G. et al. Host phylogeny constrains cross-species emergence and institution of rabies virus in bats. Science 329, 676–679 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Washburne, A. D. et al. Taxonomic patterns within the zoonotic potential of mammalian viruses. PeerJ 6, e5979 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soria, C. D., Pacifici, M., Di Marco, M., Stephen, S. M. & Rondinini, C. COMBINE: a coalesced mammal database of intrinsic and extrinsic traits. Ecology 102, e03344 (2021).

    PubMed 

    Google Scholar
     

  • Betke, B. A., Gottdenker, N. L., Meyers, L. A. & Becker, D. J. Ecological and evolutionary traits of anthropogenic roosting means in bats of the world. iScience 27, 110369 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewald, P. W. Evolution of virulence. Infect. Dis. Clin. North Am. 18, 1–15 (2004).

    PubMed 

    Google Scholar
     

  • Vicente-Santos, A. et al. Neotropical bats that co-habit with people perform as dead-end hosts for dengue virus. PLoS Negl. Trop. Dis. 11, e0005537 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, E. X. Y., Lee, W. S., Madzokere, E. T. & Herrero, L. J. Mosquitoes as appropriate vectors for alphaviruses. Viruses 10, 84 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calisher, C. H., Childs, J. E., Field, H. E., Holmes, Okay. V. & Schountz, T. Bats: vital reservoir hosts of rising viruses. Clin. Microbiol. Rev. 19, 531–545 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen, J. R. & Lazear, H. M. Antiviral effector RTP4 bats in opposition to flaviviruses. Immunity 53, 1133–1135 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fagre, A. C. & Kading, R. C. Can bats function reservoirs for arboviruses? Viruses 11, 215 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sulkin, S. E., Allen, R., Miura, T. & Toyokawa, Okay. Studies of arthropod-borne virus infections in chiroptera. VI. Isolation of Japanese B encephalitis virus from naturally contaminated bats. Am. J. Trop. Med. Hyg. 19, 77–87 (1970).

    CAS 
    PubMed 

    Google Scholar
     

  • Miura, T., Toyokawa, Okay., Allen, R. & Sulkin, S. E. Studies of arthropod-borne virus infections in chiroptera. VII. Serologic proof of pure Japanese B encephalitis virus an infection in bats. Am. J. Trop. Med. Hyg. 19, 88–93 (1970).

    CAS 
    PubMed 

    Google Scholar
     

  • Cross, J. H., Lien, J. C., Huang, W. C., Lien, S. C. & Chiu, S. F. Japanese encephalitis virus surveillance in Taiwan. II. Isolations from mosquitoes and bats in Taipei space 1969-1970. Taiwan Yi Xue Hui Za Zhi 70, 681–686 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • Guy, C., Ratcliffe, J. M. & Mideo, N. The affect of bat ecology on viral variety and reservoir standing. Ecol. Evol. 10, 5748–5758 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soman Pillai, V., Krishna, G. & Valiya Veettil, M. Nipah virus: previous outbreaks and future containment. Viruses 12, 465 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmerman, D. M. et al. Projecting the affect of an Ebola virus outbreak on endangered mountain gorillas. Sci. Rep. 13, 5675 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, D. J. et al. Disentangling interactions amongst mercury, immunity and an infection in a Neotropical bat neighborhood. J. Appl. Ecol. 58, 879–889 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Graham, C. H., Storch, D., Machac, A. & Isaac, N. Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 27, 175–187 (2018).


    Google Scholar
     

  • André, J.-B., Ferdy, J.-B. & Godelle, B. Within-host parasite dynamics, rising trade-off, and evolution of virulence with immune system. Evolution 57, 1489–1497 (2003).

    PubMed 

    Google Scholar
     

  • Brown, N. F., Wickham, M. E., Coombes, B. Okay. & Finlay, B. B. Crossing the road: choice and evolution of virulence traits. PLoS Pathog. 2, e42 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barshan, B. & Kuc, R. A bat-like sonar system for impediment localization. IEEE Trans. Syst. Man Cybern. 22, 636–646 (1992).


    Google Scholar
     

  • Nehra, V., Sharma, A. Okay. & Tripathi, R. Okay. NMR impressed power environment friendly protocol for heterogeneous wi-fi sensor community. Wirel. Netw. 25, 3689–3700 (2019).


    Google Scholar
     

  • Plowright, R. Okay. et al. Ecological dynamics of rising bat virus spillover. Proc. Biol. Sci. 282, 20142124 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s42003-025-08929-5
    and if you wish to take away this text from our web site please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *