This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09740-2
and if you wish to take away this text from our website please contact us
Rossi, M. et al. Adaptive introgression of a visible choice gene. Science 383, 1368–1373 (2024).
Fontsere, C., de Manuel, M., Marques-Bonet, T. & Kuhlwilm, M. Admixture in mammals and easy methods to perceive its useful implications. Bioessays 41, e1900123 (2019).
Fontaine, M. C. et al. Extensive introgression in a malaria vector species complicated revealed by phylogenomics. Science 347, 1258524 (2015).
Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358 (2018).
Hibbins, M. & Hahn, M. Distinguishing between histories of speciation and introgression utilizing genomic information. Bull. Soc. Syst. Biol. (2024).
Schumer, M. et al. Natural choice interacts with recombination to form the evolution of hybrid genomes. Science 360, 656–660 (2018).
Edelman, N. B. & Mallet, J. Prevalence and adaptive impression of introgression. Annu. Rev. Genet. 55, 265–283 (2021).
Harrison, R. G. & Larson, E. L. Hybridization, introgression, and the character of species boundaries. J. Hered. 105, 795–809 (2014).
Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 1963).
Bravo, G. A. et al. Embracing heterogeneity: coalescing the Tree of Life and the way forward for phylogenomics. PeerJ 7, e6399 (2019).
Li, G., Figueiró, H. V., Eizirik, E. & Murphy, W. J. Recombination-aware phylogenomics reveals the structured genomic panorama of hybridizing cat species. Mol. Biol. Evol. 36, 2111–2126 (2019).
Foley, N. M. et al. Karyotypic stasis and swarming influenced the evolution of viral tolerance in a species-rich bat radiation. Cell Genomics 4, 100482 (2024).
Christmas, M. J. et al. Evolutionary constraint and innovation throughout a whole lot of placental mammals. Science 380, eabn3943 (2023).
Noor, M. A., Grams, Okay. L., Bertucci, L. A. & Reiland, J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl Acad. Sci. USA 98, 12084–12088 (2001).
Nachman, M. W. & Payseur, B. A. Recombination fee variation and speciation: theoretical predictions and empirical outcomes from rabbits and mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 409–421 (2012).
Edelman, N. B. et al. Genomic structure and introgression form a butterfly radiation. Science 366, 594–599 (2019).
Burbrink, F. T., DeBaun, D., Foley, N. M. & Murphy, W. J. Recombination-aware phylogenomics. Trends Ecol. Evol. 9, 900–912 (2025).
Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).
Adrion, J. R., Galloway, J. G. & Kern, A. D. Predicting the panorama of recombination utilizing deep studying. Mol. Biol. Evol. 37, 1790–1808 (2020).
Foley, N. M. et al. A genomic timescale for placental mammal evolution. Science 380, eabl8189 (2023).
Pathak, S. & Stock, A. D. The X chromosomes of mammals: karylogical homology as revealed by banding methods. Genetics 78, 703–714 (1974).
Graves, J. A. M. Evolution of vertebrate intercourse chromosomes and dosage compensation. Nat. Rev. Genet. 17, 33–46 (2016).
Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999).
Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).
Haenel, Q., Laurentino, T. G., Roesti, M. & Berner, D. Meta-analysis of chromosome-scale crossover fee variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 27, 2477–2497 (2018).
Carneiro, M. et al. The genomic structure of inhabitants divergence between subspecies of the European rabbit. PLoS Genet. 10, e1003519 (2014).
Christmas, M. J. et al. Genetic boundaries to historic gene movement between cryptic species of alpine bumblebees revealed by comparative inhabitants genomics. Mol. Biol. Evol. 38, 3126–3143 (2021).
Hibbins, M. S. & Hahn, M. W. Phylogenomic approaches to detecting and characterizing introgression. Genetics 220, iyab173 (2022).
Schierup, M. H. & Hein, J. Consequences of recombination on conventional phylogenetic evaluation. Genetics 156, 879–891 (2000).
Brashear, W. A., Bredemeyer, Okay. R. & Murphy, W. J. Genomic structure constrained placental mammal X chromosome evolution. Genome Res. 31, 1353–1365 (2021).
Kruger, A. N. et al. A neofunctionalized X-linked ampliconic gene household is crucial for male fertility and equal intercourse ratio in mice. Curr. Biol. 29, 3699–3706 (2019).
Davis, B. W. et al. Mechanisms underlying mammalian hybrid sterility in two feline interspecies fashions. Mol. Biol. Evol. 32, 2534–2546 (2015).
Kaelin, C. B. et al. Ancestry dynamics and trait choice in a designer cat breed. Curr. Biol. 34, 1506–1518 (2024).
Jamieson, A. et al. Limited historic admixture between European wildcats and home cats. Curr. Biol. 33, 4751–4760 (2023).
Ai, H., Huang, L. & Ren, J. Genetic range, linkage disequilibrium and choice signatures in Chinese and Western pigs revealed by genome-wide SNP markers. PLoS ONE 8, e56001 (2013).
Darlington, C. D. & Mather, Okay. Elements of Genetics (George Allen & Unwin Ltd, 1949).
Thompson, M. J. & Jiggins, C. D. Supergenes and their function in evolution. Heredity 113, 1–8 (2014).
Berdan, E. L., Flatt, T., Kozak, G. M., Lotterhos, Okay. E. & Wielstra, B. Genomic structure of supergenes: connecting type and performance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210192 (2022).
Jay, P., Jeffries, D., Hartmann, F. E., Véber, A. & Giraud, T. Why do intercourse chromosomes progressively lose recombination?. Trends Genet. 40, 564–579 (2024).
Lenormand, T. & Roze, D. Y recombination arrest and degeneration within the absence of sexual dimorphism. Science 375, 663–666 (2022).
Loda, A., Collombet, S. & Heard, E. Gene regulation in time and area throughout X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).
Sauteraud, R. et al. Inferring genes that escape X-chromosome inactivation reveals vital contribution of variable escape genes to sex-biased illnesses. Genome Res. 31, 1629–1637 (2021).
Bansal, P., Kondaveeti, Y. & Pinter, S. F. Forged by DXZ4, FIRRE, and ICCE: How tandem repeats form the energetic and inactive X chromosome. Front. Cell Dev. Biol. 7, 328 (2019).
Westervelt, N. & Chadwick, B. P. Characterization of the ICCE repeat in mammals reveals an evolutionary relationship with the DXZ4 macrosatellite by means of conserved CTCF binding motifs. Genome Biol. Evol. 10, 2190–2204 (2018).
Bredemeyer, Okay. R. et al. Rapid macrosatellite evolution promotes X-linked hybrid male sterility in a feline interspecies cross. Mol. Biol. Evol. 38, 5588–5609 (2021).
Guo, J. et al. The grownup human testis transcriptional cell atlas. Cell Res. 28, 1141–1157 (2018).
Larson, E. L., Kopania, E. E. Okay. & Good, J. M. Spermatogenesis and the evolution of mammalian intercourse chromosomes. Trends Genet. 34, 722 (2018).
Sinnott-Armstrong, N., Naqvi, S., Rivas, M. & Pritchard, J. GWAS of three molecular traits highlights core genes and pathways alongside a extremely polygenic background. eLife 10, e58615 (2020).
Rice, W. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).
Chakrabarty, A., Chakraborty, S., Nandi, D. & Basu, A. Multivariate genetic structure reveals testosterone-driven sexual antagonism in up to date people. Proc. Natl Acad. Sci. USA 121, e2404364121 (2024).
Ruth, Okay. S. et al. Using human genetics to know the illness impacts of testosterone in women and men. Nat. Med. 26, 252–258 (2020).
Mueller, J. L. et al. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45, 1083–1087 (2013).
Bohutínská, M. & Peichel, C. L. Divergence time shapes gene reuse throughout repeated adaptation. Trends Ecol. Evol. 39, 396–407 (2024).
Lenormand, T. & Roze, D. A single concept for the evolution of intercourse chromosomes and the 2 guidelines of speciation. Science 389, eado9032 (2025).
Delmore, Okay. E., DaCosta, J. M. & Winker, Okay. Thrushes in love: Extensive gene movement, with differential resistance and choice, obscures and divulges the evolutionary historical past of a songbird clade. Mol. Ecol. (2025).
de Queiroz, A. & Gatesy, J. The supermatrix method to systematics. Trends Ecol. Evol. 22, 34–41 (2007).
Faircloth, B. C. et al. Ultraconserved components anchor hundreds of genetic markers spanning a number of evolutionary timescales. Syst. Biol. 61, 717–726 (2012).
Murat, F. et al. The molecular evolution of spermatogenesis throughout mammals. Nature 613, 308–316 (2023).
Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).
Moore, T. X centromeric drive might clarify the prevalence of polycystic ovary syndrome and different circumstances. Bioessays 46, e2400056 (2024).
O’Brien, S. J., Graphodatsky, A. S. & Perelman, P. L. Atlas of Mammalian Chromosomes (Wiley Blackwell, 2020).
Li, H. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. Preprint at (2013).
Li, H. & Durbin, R. Fast and correct brief learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).
García-Alcalde, F. et al. Qualimap: evaluating next-generation sequencing alignment information. Bioinformatics 28, 2678–2679 (2012).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing information. Genome Res. 20, 1297–1303 (2010).
Van der Auwera, G. A. et al. From FastQ information to excessive confidence variant calls: the Genome Analysis Toolkit finest practices pipeline. Curr. Protoc. Bioinformatics 11, 11.10.1–11.10.33 (2013).
Kumar, S. & Subramanian, S. Mutation charges in mammalian genomes. Proc. Natl Acad. Sci. USA 99, 803–808 (2002).
Purcell, S. et al. PLINK: a instrument set for whole-genome affiliation and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Jombart, T., Devillard, S. & Balloux, F. Discriminant evaluation of principal elements: a brand new technique for the evaluation of genetically structured populations. BMC Genet. 11, 94 (2010).
Wilder, A. P. et al. The contribution of historic processes to up to date extinction threat in placental mammals. Science 380, eabn5856 (2023).
Danecek, P. et al. The variant name format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
Lovell, J. T. et al. GENESPACE tracks areas of curiosity and gene copy quantity variation throughout a number of genomes. eLife 11, e78526 (2022).
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic native alignment search instrument. J. Mol. Biol. 215, 403–410 (1990).
Porubsky, D. et al. SVbyEye: a visible instrument to characterize structural variation amongst whole-genome assemblies. Bioinformatics 41, btaf332 (2025).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Murphy, W. J., Foley, N. M., Bredemeyer, Okay. R., Gatesy, J. & Springer, M. S. Phylogenomics and the genetic structure of the placental mammal radiation. Annu. Rev. Anim. Biosci. 9, 29–53 (2020).
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: evaluation of subsequent era sequencing information. BMC Bioinf. 15, 356 (2014).
Harris, A. J., Foley, N. M., Williams, T. L. & Murphy, W. J. Tree House Explorer: a novel genome browser for phylogenomics. Mol. Biol. Evol. 39, msac130 (2022).
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a instrument for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Borowiec, M. L. AMAS: a quick instrument for alignment manipulation and computing of abstract statistics. PeerJ 4, e1660 (2016).
Minh, B. Q. et al. IQ-TREE 2: New fashions and environment friendly strategies for phylogenetic inference within the genomic period. Mol. Biol. Evol. 37, 1530–1534 (2020).
Crotty, S. M. et al. GHOST: recovering historic sign from heterotachously developed sequence alignments. Syst. Biol. 69, 249–264 (2020).
Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: enhancing the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Lemey, P., Salemi, M. & Vandamme, A.-M. The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing (Cambridge Univ. Press, 2009).
Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).
Feder, J. L. et al. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proc. Natl Acad. Sci. USA 102, 6573–6580 (2005).
Pandey, R. S., Wilson Sayres, M. A. & Azad, R. Okay. Detecting evolutionary strata on the human X chromosome within the absence of gametologous Y-linked sequences. Genome Biol. Evol. 5, 1863–1871 (2013).
Gel, B. & Serra, E. karyoploteR: an R/Bioconductor bundle to plot customizable genomes displaying arbitrary information. Bioinformatics 33, 3088–3090 (2017).
Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer International Publishing, 2016).
Foley, N. An historical recombination desert is a speciation supergene in placental mammals. Zenodo (2025).
Li, G. et al. A high-resolution SNP array-based linkage map anchors a brand new home cat draft genome meeting and supplies detailed patterns of recombination. G3 (Bethesda) 6, 1607–1616 (2016).
This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09740-2
and if you wish to take away this text from our website please contact us
