An historical recombination desert is a speciation supergene in placental mammals

This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09740-2
and if you wish to take away this text from our website please contact us


  • Rossi, M. et al. Adaptive introgression of a visible choice gene. Science 383, 1368–1373 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontsere, C., de Manuel, M., Marques-Bonet, T. & Kuhlwilm, M. Admixture in mammals and easy methods to perceive its useful implications. Bioessays 41, e1900123 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fontaine, M. C. et al. Extensive introgression in a malaria vector species complicated revealed by phylogenomics. Science 347, 1258524 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hibbins, M. & Hahn, M. Distinguishing between histories of speciation and introgression utilizing genomic information. Bull. Soc. Syst. Biol. (2024).

    Article 

    Google Scholar
     

  • Schumer, M. et al. Natural choice interacts with recombination to form the evolution of hybrid genomes. Science 360, 656–660 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edelman, N. B. & Mallet, J. Prevalence and adaptive impression of introgression. Annu. Rev. Genet. 55, 265–283 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, R. G. & Larson, E. L. Hybridization, introgression, and the character of species boundaries. J. Hered. 105, 795–809 (2014).

    PubMed 

    Google Scholar
     

  • Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 1963).

  • Bravo, G. A. et al. Embracing heterogeneity: coalescing the Tree of Life and the way forward for phylogenomics. PeerJ 7, e6399 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G., Figueiró, H. V., Eizirik, E. & Murphy, W. J. Recombination-aware phylogenomics reveals the structured genomic panorama of hybridizing cat species. Mol. Biol. Evol. 36, 2111–2126 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, N. M. et al. Karyotypic stasis and swarming influenced the evolution of viral tolerance in a species-rich bat radiation. Cell Genomics 4, 100482 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christmas, M. J. et al. Evolutionary constraint and innovation throughout a whole lot of placental mammals. Science 380, eabn3943 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noor, M. A., Grams, Okay. L., Bertucci, L. A. & Reiland, J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl Acad. Sci. USA 98, 12084–12088 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nachman, M. W. & Payseur, B. A. Recombination fee variation and speciation: theoretical predictions and empirical outcomes from rabbits and mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 409–421 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edelman, N. B. et al. Genomic structure and introgression form a butterfly radiation. Science 366, 594–599 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burbrink, F. T., DeBaun, D., Foley, N. M. & Murphy, W. J. Recombination-aware phylogenomics. Trends Ecol. Evol. 9, 900–912 (2025).

    Article 

    Google Scholar
     

  • Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

  • Adrion, J. R., Galloway, J. G. & Kern, A. D. Predicting the panorama of recombination utilizing deep studying. Mol. Biol. Evol. 37, 1790–1808 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, N. M. et al. A genomic timescale for placental mammal evolution. Science 380, eabl8189 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pathak, S. & Stock, A. D. The X chromosomes of mammals: karylogical homology as revealed by banding methods. Genetics 78, 703–714 (1974).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graves, J. A. M. Evolution of vertebrate intercourse chromosomes and dosage compensation. Nat. Rev. Genet. 17, 33–46 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Haenel, Q., Laurentino, T. G., Roesti, M. & Berner, D. Meta-analysis of chromosome-scale crossover fee variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 27, 2477–2497 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Carneiro, M. et al. The genomic structure of inhabitants divergence between subspecies of the European rabbit. PLoS Genet. 10, e1003519 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christmas, M. J. et al. Genetic boundaries to historic gene movement between cryptic species of alpine bumblebees revealed by comparative inhabitants genomics. Mol. Biol. Evol. 38, 3126–3143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hibbins, M. S. & Hahn, M. W. Phylogenomic approaches to detecting and characterizing introgression. Genetics 220, iyab173 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Schierup, M. H. & Hein, J. Consequences of recombination on conventional phylogenetic evaluation. Genetics 156, 879–891 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brashear, W. A., Bredemeyer, Okay. R. & Murphy, W. J. Genomic structure constrained placental mammal X chromosome evolution. Genome Res. 31, 1353–1365 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruger, A. N. et al. A neofunctionalized X-linked ampliconic gene household is crucial for male fertility and equal intercourse ratio in mice. Curr. Biol. 29, 3699–3706 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, B. W. et al. Mechanisms underlying mammalian hybrid sterility in two feline interspecies fashions. Mol. Biol. Evol. 32, 2534–2546 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaelin, C. B. et al. Ancestry dynamics and trait choice in a designer cat breed. Curr. Biol. 34, 1506–1518 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamieson, A. et al. Limited historic admixture between European wildcats and home cats. Curr. Biol. 33, 4751–4760 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ai, H., Huang, L. & Ren, J. Genetic range, linkage disequilibrium and choice signatures in Chinese and Western pigs revealed by genome-wide SNP markers. PLoS ONE 8, e56001 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darlington, C. D. & Mather, Okay. Elements of Genetics (George Allen & Unwin Ltd, 1949).

  • Thompson, M. J. & Jiggins, C. D. Supergenes and their function in evolution. Heredity 113, 1–8 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berdan, E. L., Flatt, T., Kozak, G. M., Lotterhos, Okay. E. & Wielstra, B. Genomic structure of supergenes: connecting type and performance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210192 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jay, P., Jeffries, D., Hartmann, F. E., Véber, A. & Giraud, T. Why do intercourse chromosomes progressively lose recombination?. Trends Genet. 40, 564–579 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenormand, T. & Roze, D. Y recombination arrest and degeneration within the absence of sexual dimorphism. Science 375, 663–666 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loda, A., Collombet, S. & Heard, E. Gene regulation in time and area throughout X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sauteraud, R. et al. Inferring genes that escape X-chromosome inactivation reveals vital contribution of variable escape genes to sex-biased illnesses. Genome Res. 31, 1629–1637 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansal, P., Kondaveeti, Y. & Pinter, S. F. Forged by DXZ4, FIRRE, and ICCE: How tandem repeats form the energetic and inactive X chromosome. Front. Cell Dev. Biol. 7, 328 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Westervelt, N. & Chadwick, B. P. Characterization of the ICCE repeat in mammals reveals an evolutionary relationship with the DXZ4 macrosatellite by means of conserved CTCF binding motifs. Genome Biol. Evol. 10, 2190–2204 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bredemeyer, Okay. R. et al. Rapid macrosatellite evolution promotes X-linked hybrid male sterility in a feline interspecies cross. Mol. Biol. Evol. 38, 5588–5609 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. The grownup human testis transcriptional cell atlas. Cell Res. 28, 1141–1157 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larson, E. L., Kopania, E. E. Okay. & Good, J. M. Spermatogenesis and the evolution of mammalian intercourse chromosomes. Trends Genet. 34, 722 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinnott-Armstrong, N., Naqvi, S., Rivas, M. & Pritchard, J. GWAS of three molecular traits highlights core genes and pathways alongside a extremely polygenic background. eLife 10, e58615 (2020).

    Article 

    Google Scholar
     

  • Rice, W. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Chakrabarty, A., Chakraborty, S., Nandi, D. & Basu, A. Multivariate genetic structure reveals testosterone-driven sexual antagonism in up to date people. Proc. Natl Acad. Sci. USA 121, e2404364121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruth, Okay. S. et al. Using human genetics to know the illness impacts of testosterone in women and men. Nat. Med. 26, 252–258 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller, J. L. et al. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45, 1083–1087 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohutínská, M. & Peichel, C. L. Divergence time shapes gene reuse throughout repeated adaptation. Trends Ecol. Evol. 39, 396–407 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Lenormand, T. & Roze, D. A single concept for the evolution of intercourse chromosomes and the 2 guidelines of speciation. Science 389, eado9032 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delmore, Okay. E., DaCosta, J. M. & Winker, Okay. Thrushes in love: Extensive gene movement, with differential resistance and choice, obscures and divulges the evolutionary historical past of a songbird clade. Mol. Ecol. (2025).

    Article 
    PubMed 

    Google Scholar
     

  • de Queiroz, A. & Gatesy, J. The supermatrix method to systematics. Trends Ecol. Evol. 22, 34–41 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Faircloth, B. C. et al. Ultraconserved components anchor hundreds of genetic markers spanning a number of evolutionary timescales. Syst. Biol. 61, 717–726 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Murat, F. et al. The molecular evolution of spermatogenesis throughout mammals. Nature 613, 308–316 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, T. X centromeric drive might clarify the prevalence of polycystic ovary syndrome and different circumstances. Bioessays 46, e2400056 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • O’Brien, S. J., Graphodatsky, A. S. & Perelman, P. L. Atlas of Mammalian Chromosomes (Wiley Blackwell, 2020).

  • Li, H. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. Preprint at (2013).

  • Li, H. & Durbin, R. Fast and correct brief learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Alcalde, F. et al. Qualimap: evaluating next-generation sequencing alignment information. Bioinformatics 28, 2678–2679 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing information. Genome Res. 20, 1297–1303 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van der Auwera, G. A. et al. From FastQ information to excessive confidence variant calls: the Genome Analysis Toolkit finest practices pipeline. Curr. Protoc. Bioinformatics 11, 11.10.1–11.10.33 (2013).


    Google Scholar
     

  • Kumar, S. & Subramanian, S. Mutation charges in mammalian genomes. Proc. Natl Acad. Sci. USA 99, 803–808 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a instrument set for whole-genome affiliation and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant evaluation of principal elements: a brand new technique for the evaluation of genetically structured populations. BMC Genet. 11, 94 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilder, A. P. et al. The contribution of historic processes to up to date extinction threat in placental mammals. Science 380, eabn5856 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. The variant name format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovell, J. T. et al. GENESPACE tracks areas of curiosity and gene copy quantity variation throughout a number of genomes. eLife 11, e78526 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic native alignment search instrument. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porubsky, D. et al. SVbyEye: a visible instrument to characterize structural variation amongst whole-genome assemblies. Bioinformatics 41, btaf332 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, W. J., Foley, N. M., Bredemeyer, Okay. R., Gatesy, J. & Springer, M. S. Phylogenomics and the genetic structure of the placental mammal radiation. Annu. Rev. Anim. Biosci. 9, 29–53 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: evaluation of subsequent era sequencing information. BMC Bioinf. 15, 356 (2014).

    Article 

    Google Scholar
     

  • Harris, A. J., Foley, N. M., Williams, T. L. & Murphy, W. J. Tree House Explorer: a novel genome browser for phylogenomics. Mol. Biol. Evol. 39, msac130 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a instrument for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borowiec, M. L. AMAS: a quick instrument for alignment manipulation and computing of abstract statistics. PeerJ 4, e1660 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: New fashions and environment friendly strategies for phylogenetic inference within the genomic period. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crotty, S. M. et al. GHOST: recovering historic sign from heterotachously developed sequence alignments. Syst. Biol. 69, 249–264 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: enhancing the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemey, P., Salemi, M. & Vandamme, A.-M. The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing (Cambridge Univ. Press, 2009).

  • Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feder, J. L. et al. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proc. Natl Acad. Sci. USA 102, 6573–6580 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey, R. S., Wilson Sayres, M. A. & Azad, R. Okay. Detecting evolutionary strata on the human X chromosome within the absence of gametologous Y-linked sequences. Genome Biol. Evol. 5, 1863–1871 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gel, B. & Serra, E. karyoploteR: an R/Bioconductor bundle to plot customizable genomes displaying arbitrary information. Bioinformatics 33, 3088–3090 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer International Publishing, 2016).

  • Foley, N. An historical recombination desert is a speciation supergene in placental mammals. Zenodo (2025).

  • Li, G. et al. A high-resolution SNP array-based linkage map anchors a brand new home cat draft genome meeting and supplies detailed patterns of recombination. G3 (Bethesda) 6, 1607–1616 (2016).

    Article 
    PubMed 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09740-2
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *